#!/usr/bin/env python3 import argparse import asyncio import logging import math import os import struct import streams import vm Log = logging.getLogger('scope') class Scope(vm.VirtualMachine): PARAMS_MAGIC = 0xb0b2 @classmethod async def connect(cls, device=None): if device is None: scope = cls(streams.SerialStream()) elif os.path.exists(device): scope = cls(streams.SerialStream(device=device)) elif ':' in device: host, port = device.split(':', 1) Log.info("Connecting to remote scope at {}:{}".format(host, port)) reader, writer = await asyncio.open_connection(host, int(port)) scope = cls(reader, writer) else: raise ValueError("Don't know what to do with '{}'".format(device)) await scope.setup() return scope async def setup(self): Log.info("Resetting scope") await self.reset() await self.issue_get_revision() revision = ((await self.read_replies(2))[1]).decode('ascii') if revision == 'BS000501': self.awg_clock_period = 25e-9 self.awg_wavetable_size = 1024 self.awg_sample_buffer_size = 1024 self.awg_minimum_clock = 33 self.awg_maximum_voltage = 3.3 self.analog_params = (18.584, -3.5073, 298.11, 18.253, 0.40815) self.analog_offsets = {'A': -0.011785, 'B': 0.011785} self.analog_min = -5.7 self.analog_max = 8 self.capture_clock_period = 25e-9 self.capture_buffer_size = 12*1024 self.trigger_timeout_tick = 6.4e-6 self.trigger_low = -7.517 self.trigger_high = 10.816 # await self.load_params() XXX switch this off until I understand EEPROM better self._generator_running = False Log.info("Initialised scope, revision: {}".format(revision)) def close(self): if self._writer is not None: self._writer.close() self._writer = None self._reader = None __del__ = close async def load_params(self): params = [] for i in range(struct.calcsize(' clock_mode.clock_max: ticks = clock_mode.clock_max nsamples = int(round(period / ticks / nsamples_multiplier / self.capture_clock_period)) total_samples = nsamples * nsamples_multiplier buffer_width = self.capture_buffer_size // clock_mode.sample_width assert total_samples <= buffer_width if raw: lo, hi = low, high else: if low is None: low = self.analog_min if high is None: high = self.analog_max lo, hi = self.calculate_lo_hi(low, high) if trigger_channel is None: trigger_channel = channels[0] else: assert trigger_channel in channels spock_option = vm.SpockOption.TriggerTypeHardwareComparator if trigger_channel == 'A': kitchen_sink_a = vm.KitchenSinkA.ChannelAComparatorEnable spock_option |= vm.SpockOption.TriggerSourceA elif trigger_channel == 'B': kitchen_sink_a = vm.KitchenSinkA.ChannelBComparatorEnable spock_option |= vm.SpockOption.TriggerSourceB kitchen_sink_b = vm.KitchenSinkB.AnalogFilterEnable if self._generator_running: kitchen_sink_b |= vm.KitchenSinkB.WaveformGeneratorEnable if trigger_type.lower() in {'falling', 'below'}: spock_option |= vm.SpockOption.TriggerInvert trigger_intro = 0 if trigger_type.lower() in {'above', 'below'} else (1 if hair_trigger else 4) if not raw: trigger_level = (trigger_level - self.trigger_low) / (self.trigger_high - self.trigger_low) analog_enable = 0 if 'A' in channels: analog_enable |= 1 if 'B' in channels: analog_enable |= 2 async with self.transaction(): await self.set_registers(TraceMode=clock_mode.TraceMode, BufferMode=clock_mode.BufferMode, SampleAddress=0, ClockTicks=ticks, ClockScale=1, TraceIntro=total_samples//2, TraceOutro=total_samples//2, TraceDelay=0, Timeout=int(round((period*5 if timeout is None else timeout) / self.trigger_timeout_tick)), TriggerMask=0x7f, TriggerLogic=0x80, TriggerLevel=trigger_level, SpockOption=spock_option, TriggerIntro=trigger_intro, TriggerOutro=2 if hair_trigger else 4, Prelude=0, ConverterLo=lo, ConverterHi=hi, KitchenSinkA=kitchen_sink_a, KitchenSinkB=kitchen_sink_b, AnalogEnable=analog_enable) await self.issue_program_spock_registers() await self.issue_configure_device_hardware() await self.issue_triggered_trace() while True: code, timestamp = (int(x, 16) for x in await self.read_replies(2)) if code != 2: break address = int((await self.read_replies(1))[0], 16) // nsamples_multiplier traces = {} for dump_channel, channel in enumerate(sorted(channels)): async with self.transaction(): await self.set_registers(SampleAddress=(address - nsamples) * nsamples_multiplier % buffer_width, DumpMode=vm.DumpMode.Native if clock_mode.sample_width == 2 else vm.DumpMode.Raw, DumpChan=dump_channel, DumpCount=nsamples, DumpRepeat=1, DumpSend=1, DumpSkip=0) await self.issue_program_spock_registers() await self.issue_analog_dump_binary() data = await self._reader.readexactly(nsamples * clock_mode.sample_width) if clock_mode.sample_width == 2: data = struct.unpack('>{}h'.format(nsamples), data) if raw: trace = [(value / 65536 + 0.5) for value in data] else: trace = [(value / 65536 + 0.5) * (high - low) + low + self.analog_offsets[channel] for value in data] else: if raw: trace = [value / 256 for value in data] else: trace = [value / 256 * (high - low) + low + self.analog_offsets[channel] for value in data] traces[channel] = trace return traces async def start_generator(self, frequency, waveform='sine', wavetable=None, ratio=0.5, vpp=None, offset=0, min_samples=50, max_error=1e-4): if vpp is None: vpp = self.awg_maximum_voltage possible_params = [] max_clock = int(math.floor(1 / frequency / min_samples / self.awg_clock_period)) for clock in range(self.awg_minimum_clock, max_clock+1): width = 1 / frequency / (clock * self.awg_clock_period) if width <= self.awg_sample_buffer_size: nwaves = int(self.awg_sample_buffer_size / width) size = int(round(nwaves * width)) width = size / nwaves actualf = 1 / (width * clock * self.awg_clock_period) error = abs(frequency - actualf) / frequency if error < max_error: possible_params.append(((error == 0, width), (size, nwaves, clock, actualf))) if not possible_params: raise ValueError("No solution to required frequency/min_samples/max_error") size, nwaves, clock, actualf = sorted(possible_params)[-1][1] async with self.transaction(): if wavetable is None: mode = {'sine': 0, 'triangle': 1, 'sawtooth': 1, 'exponential': 2, 'square': 3}[waveform.lower()] await self.set_registers(Cmd=0, Mode=mode, Ratio=ratio) await self.issue_synthesize_wavetable() else: if len(wavetable) != self.awg_wavetable_size: raise ValueError("Wavetable data must be {} samples".format(self.awg_wavetable_size)) await self.set_registers(Cmd=0, Mode=1, Address=0, Size=1) await self.wavetable_write_bytes(wavetable) await self.set_registers(Cmd=0, Mode=0, Level=vpp / self.awg_maximum_voltage, Offset=offset / self.awg_maximum_voltage, Ratio=nwaves * self.awg_wavetable_size / size, Index=0, Address=0, Size=size) await self.issue_translate_wavetable() await self.set_registers(Cmd=2, Mode=0, Clock=clock, Modulo=size, Mark=10, Space=1, Rest=0x7f00, Option=0x8004) await self.issue_control_waveform_generator() await self.set_registers(KitchenSinkB=vm.KitchenSinkB.WaveformGeneratorEnable) await self.issue_configure_device_hardware() await self.issue('.') self._generator_running = True return actualf async def stop_generator(self): async with self.transaction(): await self.set_registers(Cmd=1, Mode=0) await self.issue_control_waveform_generator() await self.set_registers(KitchenSinkB=0) await self.issue_configure_device_hardware() self._generator_running = False async def read_wavetable(self): with self.transaction(): self.set_registers(Address=0, Size=self.awg_wavetable_size) self.issue_wavetable_read() return list(self.read_exactly(self.awg_wavetable_size)) async def read_eeprom(self, address): async with self.transaction(): await self.set_registers(EepromAddress=address) await self.issue_read_eeprom() return int((await self.read_replies(2))[1], 16) async def write_eeprom(self, address, byte): async with self.transaction(): await self.set_registers(EepromAddress=address, EepromData=byte) await self.issue_write_eeprom() if int((await self.read_replies(2))[1], 16) != byte: raise RuntimeError("Error writing EEPROM byte") async def calibrate(self, n=33): import numpy as np from scipy.optimize import leastsq, least_squares items = [] await self.start_generator(1000, waveform='square') for low in np.linspace(0.063, 0.4, n): for high in np.linspace(0.877, 0.6, n): data = await self.capture(channels='AB', period=2e-3, trigger_level=0.5, nsamples=1000, low=low, high=high, raw=True) A = np.array(data['A']) A.sort() B = np.array(data['B']) B.sort() Azero, A3v3 = A[10:490].mean(), A[510:990].mean() Bzero, B3v3 = B[10:490].mean(), B[510:990].mean() zero = (Azero + Bzero) / 2 analog_range = 3.3 / ((A3v3 + B3v3)/2 - zero) analog_low = -zero * analog_range analog_high = analog_low + analog_range offset = (Azero - Bzero) / 2 * analog_range items.append((analog_low, analog_high, low, high, offset)) await self.stop_generator() items = np.array(items) def f(params, analog_low, analog_high, low, high): lo, hi = self.calculate_lo_hi(analog_low, analog_high, params) return np.sqrt((low - lo) ** 2 + (high - hi) ** 2) result = least_squares(f, self.analog_params, args=items.T[:4], bounds=([0, -np.inf, 250, 0, 0], [np.inf, np.inf, 350, np.inf, np.inf])) if result.success in range(1, 5): self.analog_params = tuple(result.x) offset = items[:, 4].mean() self.analog_offsets = {'A': -offset, 'B': +offset} else: Log.warning("Calibration failed: {}".format(result.message)) print(result.message) return result.success import numpy as np async def main(): global s, x, y, data parser = argparse.ArgumentParser(description="scopething") parser.add_argument('device', type=str, help="Device to connect to") args = parser.parse_args() s = await Scope.connect(args.device) x = np.linspace(0, 2*np.pi, s.awg_wavetable_size, endpoint=False) y = np.round((np.sin(x)**5)*127 + 128, 0).astype('uint8') await s.start_generator(1000, wavetable=y) #if await s.calibrate(): # await s.save_params() def capture(*args, **kwargs): return asyncio.get_event_loop().run_until_complete(s.capture(*args, **kwargs)) def calibrate(*args, **kwargs): return asyncio.get_event_loop().run_until_complete(s.calibrate(*args, **kwargs)) if __name__ == '__main__': import sys logging.basicConfig(level=logging.DEBUG, stream=sys.stderr) asyncio.get_event_loop().run_until_complete(main())