import asyncio import logging import struct import streams import vm Log = logging.getLogger('scope') class Scope(vm.VirtualMachine): PARAMS_MAGIC = 0xb0b2 @classmethod async def connect(cls, stream=None): scope = cls(stream if stream is not None else streams.SerialStream()) await scope.setup() return scope def __init__(self, stream): super(Scope, self).__init__(stream) @staticmethod def _analog_map_func(ks, low, high): return ks[0] + ks[1]*low + ks[2]*high async def setup(self): await self.reset() await self.issue_get_revision() revision = ((await self.read_replies(2))[1]).decode('ascii') if revision == 'BS000501': self.awg_clock_period = 25e-9 self.awg_wavetable_size = 1024 self.awg_sample_buffer_size = 1024 self.awg_minimum_clock = 33 self.awg_maximum_voltage = 3.3 self.analog_params = (18.584, -3.5073, 298.11, 18.253, 0.40815) self.analog_offsets = {'A': -0.011785, 'B': 0.011785} self.analog_min = -5.7 self.analog_max = 8 self.capture_clock_period = 25e-9 self.capture_buffer_size = 12*1024 self.trigger_timeout_tick = 6.4e-6 self.trigger_low = -7.517 self.trigger_high = 10.816 #await self.load_params() XXX switch this off until I understand EEPROM better self._generator_running = False Log.info("Initialised scope, revision: {}".format(revision)) async def load_params(self): params = [] for i in range(struct.calcsize('= 20 and ticks < 65536: sample_width = 2 buffer_width = 6*1024 dump_mode = vm.DumpMode.Native if 'A' in channels and 'B' in channels: trace_mode = vm.TraceMode.MacroChop buffer_mode = vm.BufferMode.MacroChop else: trace_mode = vm.TraceMode.Macro buffer_mode = vm.BufferMode.Macro elif ticks >= 15 and ticks < 40: sample_width = 1 buffer_width = 12*1024 dump_mode = vm.DumpMode.Raw if 'A' in channels and 'B' in channels: trace_mode = vm.TraceMode.AnalogChop buffer_mode = vm.BufferMode.Chop else: trace_mode = vm.TraceMode.Analog buffer_mode = vm.BufferMode.Single elif ticks >= 8 and ticks < 15: sample_width = 1 buffer_width = 12*1024 dump_mode = vm.DumpMode.Raw if 'A' in channels and 'B' in channels: trace_mode = vm.TraceMode.AnalogFastChop buffer_mode = vm.BufferMode.Chop else: trace_mode = vm.TraceMode.AnalogFast buffer_mode = vm.BufferMode.Single elif ticks >= 2 and ticks < 8: if ticks > 5: ticks = 5 sample_width = 1 buffer_width = 12*1024 dump_mode = vm.DumpMode.Raw if 'A' in channels and 'B' in channels: trace_mode = vm.TraceMode.AnalogShotChop buffer_mode = vm.BufferMode.Chop else: trace_mode = vm.TraceMode.AnalogShot buffer_mode = vm.BufferMode.Single else: raise RuntimeError("Unsupported clock period: {}".format(ticks)) nsamples = int(round(period / ticks / nsamples_multiplier / self.capture_clock_period)) total_samples = nsamples * nsamples_multiplier assert total_samples <= buffer_width if raw: lo, hi = low, high else: if low is None: low = self.analog_min if high is None: high = self.analog_max lo, hi = self.calculate_lo_hi(low, high) if trigger_channel is None: trigger_channel = channels[0] else: assert trigger_channel in channels spock_option = vm.SpockOption.TriggerTypeHardwareComparator if trigger_channel == 'A': kitchen_sink_a = vm.KitchenSinkA.ChannelAComparatorEnable spock_option |= vm.SpockOption.TriggerSourceA elif trigger_channel == 'B': kitchen_sink_a = vm.KitchenSinkA.ChannelBComparatorEnable spock_option |= vm.SpockOption.TriggerSourceB kitchen_sink_b = vm.KitchenSinkB.AnalogFilterEnable if self._generator_running: kitchen_sink_b |= vm.KitchenSinkB.WaveformGeneratorEnable if trigger_type.lower() in {'falling', 'below'}: spock_option |= vm.SpockOption.TriggerInvert trigger_intro = 0 if trigger_type.lower() in {'above', 'below'} else (1 if hair_trigger else 4) if not raw: trigger_level = (trigger_level - self.trigger_low) / (self.trigger_high - self.trigger_low) analog_enable = 0 if 'A' in channels: analog_enable |= 1 if 'B' in channels: analog_enable |= 2 async with self.transaction(): await self.set_registers(TraceMode=trace_mode, BufferMode=buffer_mode, SampleAddress=0, ClockTicks=ticks, ClockScale=1, TraceIntro=total_samples//2, TraceOutro=total_samples//2, TraceDelay=0, Timeout=int(round((period*5 if timeout is None else timeout) / self.trigger_timeout_tick)), TriggerMask=0x7f, TriggerLogic=0x80, TriggerLevel=trigger_level, SpockOption=spock_option, TriggerIntro=trigger_intro, TriggerOutro=2 if hair_trigger else 4, Prelude=0, ConverterLo=lo, ConverterHi=hi, KitchenSinkA=kitchen_sink_a, KitchenSinkB=kitchen_sink_b, AnalogEnable=analog_enable) await self.issue_program_spock_registers() await self.issue_configure_device_hardware() await self.issue_triggered_trace() while True: code, timestamp = (int(x, 16) for x in await self.read_replies(2)) if code != 2: break address = int((await self.read_replies(1))[0], 16) // nsamples_multiplier traces = {} for dump_channel, channel in enumerate(sorted(channels)): async with self.transaction(): await self.set_registers(SampleAddress=(address - nsamples) * nsamples_multiplier % buffer_width, DumpMode=dump_mode, DumpChan=dump_channel, DumpCount=nsamples, DumpRepeat=1, DumpSend=1, DumpSkip=0) await self.issue_program_spock_registers() await self.issue_analog_dump_binary() data = await self._stream.readexactly(nsamples * sample_width) if sample_width == 2: if raw: trace = [(value / 65536 + 0.5) for value in struct.unpack('>{}h'.format(nsamples), data)] else: trace = [(value / 65536 + 0.5) * (high - low) + low + self.analog_offsets[channel] for value in struct.unpack('>{}h'.format(nsamples), data)] else: if raw: trace = [value / 256 for value in data] else: trace = [value / 256 * (high - low) + low + self.analog_offsets[channel] for value in data] traces[channel] = trace return traces async def start_generator(self, frequency, waveform='sine', wavetable=None, ratio=0.5, vpp=None, offset=0, min_samples=50, max_error=1e-4): if vpp is None: vpp = self.awg_maximum_voltage possible_params = [] max_clock = int(round(1 / frequency / min_samples / self.awg_clock_period, 0)) for clock in range(self.awg_minimum_clock, max_clock+1): width = 1 / frequency / (clock * self.awg_clock_period) if width <= self.awg_sample_buffer_size: nwaves = int(self.awg_sample_buffer_size / width) size = int(round(nwaves * width)) width = size / nwaves actualf = 1 / (width * clock * self.awg_clock_period) error = abs(frequency - actualf) / frequency if error < max_error: possible_params.append(((error == 0, width), (size, nwaves, clock, actualf))) clock += 1 if not possible_params: raise ValueError("No solution to required frequency/min_samples/max_error") size, nwaves, clock, actualf = sorted(possible_params)[-1][1] async with self.transaction(): if wavetable is None: mode = {'sine': 0, 'triangle': 1, 'sawtooth': 1, 'exponential': 2, 'square': 3}[waveform.lower()] await self.set_registers(Cmd=0, Mode=mode, Ratio=ratio) await self.issue_synthesize_wavetable() else: if len(wavetable) != self.awg_wavetable_size: raise ValueError("Wavetable data must be {} samples".format(self.awg_wavetable_size)) await self.set_registers(Cmd=0, Mode=1, Address=0, Size=1) await self.wavetable_write_bytes(wavetable) await self.set_registers(Cmd=0, Mode=0, Level=vpp/self.awg_maximum_voltage, Offset=2*offset/self.awg_maximum_voltage, Ratio=nwaves * self.awg_wavetable_size / size, Index=0, Address=0, Size=size) await self.issue_translate_wavetable() await self.set_registers(Cmd=2, Mode=0, Clock=clock, Modulo=size, Mark=10, Space=1, Rest=0x7f00, Option=0x8004) await self.issue_control_waveform_generator() await self.set_registers(KitchenSinkB=vm.KitchenSinkB.WaveformGeneratorEnable) await self.issue_configure_device_hardware() await self.issue('.') self._generator_running = True return actualf async def stop_generator(self): async with self.transaction(): await self.set_registers(Cmd=1, Mode=0) await self.issue_control_waveform_generator() await self.set_registers(KitchenSinkB=0) await self.issue_configure_device_hardware() self._generator_running = False async def read_wavetable(self): with self.transaction(): self.set_registers(Address=0, Size=self.awg_wavetable_size) self.issue_wavetable_read() return list(self.read_exactly(self.awg_wavetable_size)) async def read_eeprom(self, address): async with self.transaction(): await self.set_registers(EepromAddress=address) await self.issue_read_eeprom() return int((await self.read_replies(2))[1], 16) async def write_eeprom(self, address, byte): async with self.transaction(): await self.set_registers(EepromAddress=address, EepromData=byte) await self.issue_write_eeprom() if int((await self.read_replies(2))[1], 16) != byte: raise RuntimeError("Error writing EEPROM byte") async def calibrate(self, n=33): global data import numpy as np import pandas as pd from scipy.optimize import leastsq, least_squares items = [] await self.start_generator(1000, waveform='square') for low in np.linspace(0.063, 0.4, n): for high in np.linspace(0.877, 0.6, n): data = await self.capture(channels='AB', period=2e-3, trigger_level=0.5, nsamples=1000, low=low, high=high, raw=True) A = np.array(data['A']) A.sort() B = np.array(data['B']) B.sort() Azero, A3v3 = A[10:490].mean(), A[510:990].mean() Bzero, B3v3 = B[10:490].mean(), B[510:990].mean() zero = (Azero + Bzero) / 2 analog_range = 3.3 / ((A3v3 + B3v3)/2 - zero) analog_low = -zero * analog_range analog_high = analog_low + analog_range ABoffset = (Azero - Bzero) / 2 * analog_range items.append({'low': low, 'high': high, 'analog_low': analog_low, 'analog_high': analog_high, 'offset': ABoffset}) await self.stop_generator() data = pd.DataFrame(items) def f(params, analog_low, analog_high, low, high): lo, hi = self.calculate_lo_hi(analog_low, analog_high, params) return np.sqrt((low - lo) ** 2 + (high - hi) ** 2) result = least_squares(f, self.analog_params, args=(data.analog_low, data.analog_high, data.low, data.high), bounds=([0, -np.inf, 250, 0, 0], [np.inf, np.inf, 350, np.inf, np.inf])) if result.success in range(1, 5): self.analog_params = tuple(result.x) self.analog_offsets = {'A': -data.offset.mean(), 'B': +data.offset.mean()} else: Log.warning("Calibration failed: {}".format(result.message)) print(result.message) return result.success import numpy as np import pandas as pd async def main(): global s, x, y, data s = await Scope.connect(streams.SerialStream(device='/Users/jonathan/test')) x = np.linspace(0, 2*np.pi, s.awg_wavetable_size, endpoint=False) y = np.round((np.sin(x)**5)*127 + 128, 0).astype('uint8') await s.start_generator(1000, wavetable=y) #if await s.calibrate(): # await s.save_params() def capture(*args, **kwargs): return pd.DataFrame(asyncio.get_event_loop().run_until_complete(s.capture(*args, **kwargs))) if __name__ == '__main__': import logging import sys logging.basicConfig(level=logging.DEBUG, stream=sys.stderr) asyncio.get_event_loop().run_until_complete(main())