mirror of
https://github.com/jonathanhogg/scopething
synced 2025-07-13 10:52:08 +01:00
151 lines
4.8 KiB
Python
151 lines
4.8 KiB
Python
"""
|
|
analysis
|
|
========
|
|
|
|
Library code for analysing captures returned by `Scope.capture()`.
|
|
"""
|
|
|
|
# pylama:ignore=C0103,R1716
|
|
|
|
import numpy as np
|
|
|
|
from utils import DotDict
|
|
|
|
|
|
def interpolate_min_x(f, x):
|
|
return 0.5 * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x
|
|
|
|
|
|
def rms(f):
|
|
return np.sqrt((f ** 2).mean())
|
|
|
|
|
|
def sine_wave(n):
|
|
return np.sin(np.linspace(0, 2*np.pi, n, endpoint=False))
|
|
|
|
|
|
def triangle_wave(n):
|
|
x = np.linspace(0, 4, n, endpoint=False)
|
|
x2 = x % 2
|
|
y = np.where(x2 < 1, x2, 2 - x2)
|
|
y = np.where(x // 2 < 1, y, -y)
|
|
return y
|
|
|
|
|
|
def square_wave(n, duty=0.5):
|
|
w = int(n * duty)
|
|
return np.hstack([np.ones(w), -np.ones(n - w)])
|
|
|
|
|
|
def sawtooth_wave(n):
|
|
return 2 * (np.linspace(0.5, 1.5, n, endpoint=False) % 1) - 1
|
|
|
|
|
|
def moving_average(samples, width, mode='wrap'):
|
|
hwidth = width // 2
|
|
samples = np.take(samples, np.arange(-hwidth, len(samples)+width-hwidth), mode=mode)
|
|
cumulative = samples.cumsum()
|
|
return (cumulative[width:] - cumulative[:-width]) / width
|
|
|
|
|
|
def calculate_periodicity(series, window=0.1):
|
|
samples = np.array(series.samples, dtype='double')
|
|
window = int(len(samples) * window)
|
|
errors = np.zeros(len(samples) - window)
|
|
for i in range(1, len(errors) + 1):
|
|
errors[i-1] = rms(samples[i:] - samples[:-i])
|
|
threshold = errors.max() / 2
|
|
minima = []
|
|
for i in range(window, len(errors) - window):
|
|
p = errors[i-window:i+window].argmin()
|
|
if p == window and errors[p + i - window] < threshold:
|
|
minima.append(interpolate_min_x(errors, i))
|
|
if len(minima) <= 1:
|
|
return None
|
|
ks = np.polyfit(np.arange(0, len(minima)), minima, 1)
|
|
return ks[0] / series.sample_rate
|
|
|
|
|
|
def extract_waveform(series, period):
|
|
p = int(round(series.sample_rate * period))
|
|
n = len(series.samples) // p
|
|
if n <= 2:
|
|
return None, None, None, None
|
|
samples = np.array(series.samples)[:p*n]
|
|
cumsum = samples.cumsum()
|
|
underlying = (cumsum[p:] - cumsum[:-p]) / p
|
|
n -= 1
|
|
samples = samples[p//2:p*n + p//2] - underlying
|
|
wave = np.zeros(p)
|
|
for i in range(n):
|
|
o = i * p
|
|
wave += samples[o:o+p]
|
|
wave /= n
|
|
return wave, p//2, n, underlying
|
|
|
|
|
|
def normalize_waveform(samples, smooth=7):
|
|
n = len(samples)
|
|
smoothed = moving_average(samples, smooth)
|
|
scale = (smoothed.max() - smoothed.min()) / 2
|
|
offset = (smoothed.max() + smoothed.min()) / 2
|
|
smoothed -= offset
|
|
last_rising = first_falling = None
|
|
crossings = []
|
|
for i in range(n):
|
|
if smoothed[i-1] < 0 and smoothed[i] > 0:
|
|
last_rising = i
|
|
elif smoothed[i-1] > 0 and smoothed[i] < 0:
|
|
if last_rising is None:
|
|
first_falling = i
|
|
else:
|
|
crossings.append((i - last_rising, last_rising))
|
|
if first_falling is not None:
|
|
crossings.append((n + first_falling - last_rising, last_rising))
|
|
first = min(crossings)[1]
|
|
wave = (np.hstack([samples[first:], samples[:first]]) - offset) / scale
|
|
return wave, offset, scale, first, sorted((i - first % n, w) for (w, i) in crossings)
|
|
|
|
|
|
def characterize_waveform(samples, crossings):
|
|
n = len(samples)
|
|
possibles = []
|
|
if len(crossings) == 1:
|
|
duty_cycle = crossings[0][1] / n
|
|
if 0.45 < duty_cycle < 0.55:
|
|
possibles.append((rms(samples - sine_wave(n)), 'sine', None))
|
|
possibles.append((rms(samples - triangle_wave(n)), 'triangle', None))
|
|
possibles.append((rms(samples - sawtooth_wave(n)), 'sawtooth', None))
|
|
possibles.append((rms(samples - square_wave(n, duty_cycle)), 'square', duty_cycle))
|
|
possibles.sort()
|
|
return possibles
|
|
|
|
|
|
def annotate_series(series):
|
|
period = calculate_periodicity(series)
|
|
if period is not None:
|
|
waveform = DotDict(period=period, frequency=1 / period)
|
|
wave, start, count, underlying = extract_waveform(series, period)
|
|
wave, offset, scale, first, crossings = normalize_waveform(wave)
|
|
waveform.samples = wave
|
|
waveform.beginning = start + first
|
|
waveform.count = count
|
|
waveform.amplitude = scale
|
|
waveform.offset = underlying.mean() + offset
|
|
waveform.timestamps = np.arange(len(wave)) * series.sample_period
|
|
waveform.sample_period = series.sample_period
|
|
waveform.sample_rate = series.sample_rate
|
|
waveform.capture_start = series.capture_start + waveform.beginning * series.sample_period
|
|
possibles = characterize_waveform(wave, crossings)
|
|
if possibles:
|
|
error, shape, duty_cycle = possibles[0]
|
|
waveform.error = error
|
|
waveform.shape = shape
|
|
if duty_cycle is not None:
|
|
waveform.duty_cycle = duty_cycle
|
|
else:
|
|
waveform.shape = 'unknown'
|
|
series.waveform = waveform
|
|
return True
|
|
return False
|