1
0
mirror of https://github.com/jonathanhogg/scopething synced 2025-07-14 03:02:09 +01:00
Files
scopething/scope.py
2017-07-11 18:09:14 +01:00

435 lines
20 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import asyncio
from collections import namedtuple
import logging
import math
import os
import sys
import streams
import vm
Log = logging.getLogger('scope')
class DotDict(dict):
__getattr__ = dict.__getitem__
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class Scope(vm.VirtualMachine):
PARAMS_MAGIC = 0xb0b2
AnalogParams = namedtuple('AnalogParams', ['d', 'f', 'b', 'scale', 'offset'])
@classmethod
async def connect(cls, device=None):
if device is None:
reader = writer = streams.SerialStream.stream_matching(0x0403, 0x6001)
elif os.path.exists(device):
reader = writer = streams.SerialStream(device=device)
elif ':' in device:
host, port = device.split(':', 1)
Log.info(f"Connecting to remote scope at {host}:{port}")
reader, writer = await asyncio.open_connection(host, int(port))
else:
raise ValueError(f"Don't know what to do with '{device}'")
scope = cls(reader, writer)
await scope.setup()
return scope
async def setup(self):
Log.info("Resetting scope")
await self.reset()
await self.issue_get_revision()
revision = ((await self.read_replies(2))[1]).decode('ascii')
if revision == 'BS000501':
self.awg_clock_period = 25e-9
self.awg_wavetable_size = 1024
self.awg_sample_buffer_size = 1024
self.awg_minimum_clock = 33
self.awg_maximum_voltage = 3.33
#self.analog_params = self.AnalogParams(20, -5, 300, 18.3, -7.5)
#self.analog_offsets = {'A': 0, 'B': 0}
self.analog_params = self.AnalogParams(19.7, -4.86, 298.6, 18.361, -7.496)
self.analog_offsets = {'A': -0.00937, 'B': 0.00937}
self.analog_min = -5.5
self.analog_max = 8
self.capture_clock_period = 25e-9
self.capture_buffer_size = 12<<10
self.timeout_clock_period = 6.4e-6
else:
raise RuntimeError(f"Unsupported scope, revision: {revision}")
self._awg_running = False
Log.info(f"Initialised scope, revision: {revision}")
def close(self):
if self._writer is not None:
self._writer.close()
self._writer = None
self._reader = None
__del__ = close
def calculate_lo_hi(self, low, high, params=None):
params = self.analog_params if params is None else self.AnalogParams(*params)
l = (low - params.offset) / params.scale
h = (high - params.offset) / params.scale
al = params.d + params.f*(2*l-1)**2
ah = params.d + params.f*(2*h-1)**2
dl = l - al*(h-2*l)/params.b
dh = h + ah*(2*h-l-1)/params.b
return dl, dh
async def capture(self, channels=['A'], trigger=None, trigger_level=None, trigger_type='rising', hair_trigger=False,
period=1e-3, nsamples=1000, timeout=None, low=None, high=None, raw=False, trigger_position=0.25):
analog_channels = set()
logic_channels = set()
for channel in channels:
if channel in {'A', 'B'}:
analog_channels.add(channel)
if trigger is None:
trigger = channel
elif channel == 'L':
logic_channels.update(range(8))
if trigger is None:
trigger = {0: 1}
elif channel.startswith('L'):
i = int(channel[1:])
logic_channels.add(i)
if trigger is None:
trigger = {i: 1}
else:
raise ValueError(f"Unrecognised channel: {channel}")
if self._awg_running and 4 in logic_channels:
logic_channels.remove(4)
if 'A' in analog_channels and 7 in logic_channels:
logic_channels.remove(7)
if 'B' in analog_channels and 6 in logic_channels:
logic_channels.remove(6)
analog_enable = 0
if 'A' in channels:
analog_enable |= 1
if 'B' in channels:
analog_enable |= 2
logic_enable = sum(1<<channel for channel in logic_channels)
ticks = int(round(period / nsamples / self.capture_clock_period))
for capture_mode in vm.CaptureModes:
if capture_mode.analog_channels == len(analog_channels) and capture_mode.logic_channels == bool(logic_channels):
if ticks in range(capture_mode.clock_low, capture_mode.clock_high + 1):
clock_scale = 1
elif capture_mode.clock_divide and ticks > capture_mode.clock_high:
for clock_scale in range(2, 1<<16):
test_ticks = int(round(period / nsamples / self.capture_clock_period / clock_scale))
if test_ticks in range(capture_mode.clock_low, capture_mode.clock_high + 1):
ticks = test_ticks
break
else:
continue
else:
continue
if capture_mode.clock_max is not None and ticks > capture_mode.clock_max:
ticks = capture_mode.clock_max
nsamples = int(round(period / ticks / self.capture_clock_period / clock_scale))
if len(analog_channels) == 2:
nsamples -= nsamples % 2
buffer_width = self.capture_buffer_size // capture_mode.sample_width
if logic_channels and analog_channels:
buffer_width //= 2
if nsamples <= buffer_width:
break
else:
raise RuntimeError("Unable to find appropriate capture mode")
if raw:
lo, hi = low, high
else:
if low is None:
low = self.analog_min
if high is None:
high = self.analog_max
lo, hi = self.calculate_lo_hi(low, high)
spock_option = vm.SpockOption.TriggerTypeHardwareComparator
kitchen_sink_a = kitchen_sink_b = 0
if self._awg_running:
kitchen_sink_b |= vm.KitchenSinkB.WaveformGeneratorEnable
if trigger == 'A' or 7 in logic_channels:
kitchen_sink_a |= vm.KitchenSinkA.ChannelAComparatorEnable
if trigger == 'B' or 6 in logic_channels:
kitchen_sink_a |= vm.KitchenSinkA.ChannelBComparatorEnable
if analog_channels:
kitchen_sink_b |= vm.KitchenSinkB.AnalogFilterEnable
if trigger_level is None:
trigger_level = (high + low) / 2
trigger_level = (trigger_level - self.analog_params.offset) / self.analog_params.scale
if trigger == 'A' or trigger == 'B':
if trigger == 'A':
spock_option |= vm.SpockOption.TriggerSourceA
trigger_logic = 0x80
elif trigger == 'B':
spock_option |= vm.SpockOption.TriggerSourceB
trigger_logic = 0x40
trigger_mask = 0xff ^ trigger_logic
else:
trigger_logic = 0
trigger_mask = 0xff
for channel, value in trigger.items():
mask = 1<<channel
trigger_mask &= ~mask
if value:
trigger_logic |= mask
if trigger_type.lower() in {'falling', 'below'}:
spock_option |= vm.SpockOption.TriggerInvert
trigger_outro = 2 if hair_trigger else 4
trigger_intro = 0 if trigger_type.lower() in {'above', 'below'} else trigger_outro
trigger_samples = min(max(0, int(nsamples*trigger_position)), nsamples)
trace_outro = max(0, nsamples-trigger_samples-trigger_outro)
trace_intro = max(0, trigger_samples-trigger_intro)
if timeout is None:
trigger_timeout = 0
else:
trigger_timeout = max(1, int(math.ceil(((trigger_outro+trace_outro)*ticks*clock_scale*self.capture_clock_period
+ timeout)/self.timeout_clock_period)))
async with self.transaction():
await self.set_registers(TraceMode=capture_mode.TraceMode, BufferMode=capture_mode.BufferMode,
SampleAddress=0, ClockTicks=ticks, ClockScale=clock_scale,
TriggerLevel=trigger_level, TriggerLogic=trigger_logic, TriggerMask=trigger_mask,
TraceIntro=trace_intro, TraceOutro=trace_outro, TraceDelay=0, Timeout=trigger_timeout,
TriggerIntro=trigger_intro, TriggerOutro=trigger_outro, Prelude=0,
SpockOption=spock_option, ConverterLo=lo, ConverterHi=hi,
KitchenSinkA=kitchen_sink_a, KitchenSinkB=kitchen_sink_b,
AnalogEnable=analog_enable, DigitalEnable=logic_enable)
await self.issue_program_spock_registers()
await self.issue_configure_device_hardware()
await self.issue_triggered_trace()
while True:
code, timestamp = (int(x, 16) for x in await self.read_replies(2))
if code != 2:
break
start_timestamp = timestamp - nsamples*ticks*clock_scale
if start_timestamp < 0:
start_timestamp += 1<<32
timestamp += 1<<32
address = int((await self.read_replies(1))[0], 16)
if capture_mode.BufferMode in {vm.BufferMode.Chop, vm.BufferMode.MacroChop, vm.BufferMode.ChopDual}:
address -= address % 2
traces = DotDict()
for dump_channel, channel in enumerate(sorted(analog_channels)):
asamples = nsamples // len(analog_channels)
async with self.transaction():
await self.set_registers(SampleAddress=(address - nsamples) % buffer_width,
DumpMode=vm.DumpMode.Native if capture_mode.sample_width == 2 else vm.DumpMode.Raw,
DumpChan=dump_channel, DumpCount=asamples, DumpRepeat=1, DumpSend=1, DumpSkip=0)
await self.issue_program_spock_registers()
await self.issue_analog_dump_binary()
value_multiplier, value_offset = (1, 0) if raw else ((high-low), low+self.analog_offsets[channel])
data = await self.read_analog_samples(asamples, capture_mode.sample_width)
data = (value*value_multiplier + value_offset for value in data)
ts = (t*self.capture_clock_period for t in range(start_timestamp+dump_channel*ticks*clock_scale, timestamp,
ticks*clock_scale*len(analog_channels)))
traces[channel] = dict(zip(ts, data))
if logic_channels:
async with self.transaction():
await self.set_registers(SampleAddress=(address - nsamples) % buffer_width,
DumpMode=vm.DumpMode.Raw, DumpChan=128, DumpCount=nsamples, DumpRepeat=1, DumpSend=1, DumpSkip=0)
await self.issue_program_spock_registers()
await self.issue_analog_dump_binary()
data = await self.read_logic_samples(nsamples)
ts = [t*self.capture_clock_period for t in range(start_timestamp, timestamp, ticks*clock_scale)]
for i in logic_channels:
mask = 1<<i
traces[f'L{i}'] = {t: 1 if value & mask else 0 for (t, value) in zip(ts, data)}
return traces
async def start_generator(self, frequency, waveform='sine', wavetable=None, ratio=0.5, vpp=None, offset=0,
min_samples=50, max_error=1e-4):
if vpp is None:
vpp = self.awg_maximum_voltage
possible_params = []
max_clock = int(math.floor(1 / frequency / min_samples / self.awg_clock_period))
for clock in range(self.awg_minimum_clock, max_clock+1):
width = 1 / frequency / (clock * self.awg_clock_period)
if width <= self.awg_sample_buffer_size:
nwaves = int(self.awg_sample_buffer_size / width)
size = int(round(nwaves * width))
width = size / nwaves
actualf = 1 / (width * clock * self.awg_clock_period)
error = abs(frequency - actualf) / frequency
if error < max_error:
possible_params.append(((error == 0, width), (size, nwaves, clock, actualf)))
if not possible_params:
raise ValueError("No solution to required frequency/min_samples/max_error")
size, nwaves, clock, actualf = sorted(possible_params)[-1][1]
async with self.transaction():
if wavetable is None:
mode = {'sine': 0, 'triangle': 1, 'sawtooth': 1, 'exponential': 2, 'square': 3}[waveform.lower()]
await self.set_registers(Cmd=0, Mode=mode, Ratio=ratio)
await self.issue_synthesize_wavetable()
else:
wavetable = [min(max(0, int(round(y*255))),255) for y in wavetable]
if len(wavetable) != self.awg_wavetable_size:
raise ValueError(f"Wavetable data must be {self.awg_wavetable_size} samples")
await self.set_registers(Cmd=0, Mode=1, Address=0, Size=1)
await self.wavetable_write_bytes(wavetable)
await self.set_registers(Cmd=0, Mode=0, Level=vpp/self.awg_maximum_voltage,
Offset=offset/self.awg_maximum_voltage,
Ratio=nwaves*self.awg_wavetable_size/size,
Index=0, Address=0, Size=size)
await self.issue_translate_wavetable()
await self.set_registers(Cmd=2, Mode=0, Clock=clock, Modulo=size,
Mark=10, Space=1, Rest=0x7f00, Option=0x8004)
await self.issue_control_waveform_generator()
await self.set_registers(KitchenSinkB=vm.KitchenSinkB.WaveformGeneratorEnable)
await self.issue_configure_device_hardware()
await self.issue('.')
self._awg_running = True
return actualf
async def stop_generator(self):
async with self.transaction():
await self.set_registers(Cmd=1, Mode=0)
await self.issue_control_waveform_generator()
await self.set_registers(KitchenSinkB=0)
await self.issue_configure_device_hardware()
self._awg_running = False
async def read_wavetable(self):
with self.transaction():
self.set_registers(Address=0, Size=self.awg_wavetable_size)
self.issue_wavetable_read()
return list(self.wavetable_read_bytes(self.awg_wavetable_size))
async def read_eeprom(self, address):
async with self.transaction():
await self.set_registers(EepromAddress=address)
await self.issue_read_eeprom()
return int((await self.read_replies(2))[1], 16)
async def write_eeprom(self, address, byte):
async with self.transaction():
await self.set_registers(EepromAddress=address, EepromData=byte)
await self.issue_write_eeprom()
if int((await self.read_replies(2))[1], 16) != byte:
raise RuntimeError("Error writing EEPROM byte")
async def calibrate(self, n=32):
import numpy as np
from scipy.optimize import least_squares
items = []
await self.start_generator(frequency=1000, waveform='square')
i = 0
low_min, high_max = self.calculate_lo_hi(self.analog_min, self.analog_max)
low_max, high_min = self.calculate_lo_hi(0, self.awg_maximum_voltage)
for low in np.linspace(low_min, low_max, n):
for high in np.linspace(high_min, high_max, n):
data = await self.capture(channels=['A','B'], period=2e-3 if i%2 == 0 else 1e-3, nsamples=2000, low=low, high=high, timeout=0, raw=True)
A = np.fromiter(data['A'].values(), dtype='float')
A.sort()
B = np.fromiter(data['B'].values(), dtype='float')
B.sort()
Azero, Amax = A[25:475].mean(), A[525:975].mean()
Bzero, Bmax = B[25:475].mean(), B[525:975].mean()
if Azero > 0.1 and Bzero > 0.1 and Amax < 0.9 and Bmax < 0.9:
zero = (Azero + Bzero) / 2
analog_range = self.awg_maximum_voltage / ((Amax + Bmax)/2 - zero)
analog_low = -zero * analog_range
analog_high = analog_low + analog_range
offset = ((Amax - Bmax) + (Azero - Bzero))/2 * analog_range
items.append((analog_low, analog_high, low, high, offset))
i += 1
await self.stop_generator()
items = np.array(items)
def f(params, analog_low, analog_high, low, high):
lo, hi = self.calculate_lo_hi(analog_low, analog_high, params)
return np.sqrt((low - lo) ** 2 + (high - hi) ** 2)
result = least_squares(f, self.analog_params, args=items.T[:4], xtol=1e-9, max_nfev=10000,
bounds=([0, -np.inf, 200, 0, -np.inf],
[np.inf, np.inf, 400, np.inf, 0]))
if result.success in range(1, 5):
Log.info(f"Calibration succeeded: {result.success}")
self.analog_params = params = self.AnalogParams(*result.x)
Log.info(f"Analog parameters: d={params.d:.1f}Ω f={params.f:.2f}Ω b={params.b:.1f}Ω scale={params.scale:.3f}V offset={params.offset:.3f}V")
clow, chigh = self.calculate_lo_hi(items[:,0], items[:,1])
diff = np.sqrt((((clow-items[:,2])**2).mean() + ((chigh-items[:,3])**2).mean()) / 2)
Log.info(f"Mean error: {diff*10000:.1f}bps")
offsets = items[:,4]
offset = offsets.mean()
Log.info(f"Mean A-B offset: {offset*1000:.1f}mV (+/- {100*offsets.std()/offset:.1f}%)")
self.analog_offsets = {'A': -offset/2, 'B': +offset/2}
else:
Log.warning(f"Calibration failed: {result.message}")
return result.success
"""
resistance$ ipython3 --pylab
Using matplotlib backend: MacOSX
In [1]: import pandas
In [2]: run scope
INFO:scope:Resetting scope
INFO:scope:Initialised scope, revision: BS000501
In [3]: generate(2000, 'triangle')
Out[3]: 2000.0
In [4]: t = pandas.DataFrame(capture(['A', 'B'], low=0, high=3.3))
In [5]: t.interpolate().plot()
Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x10db77d30>
In [6]: t = pandas.DataFrame(capture(['L'], low=0, high=3.3))
In [7]: t.plot()
Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x10d05d5f8>
In [8]:
"""
async def main():
global s
parser = argparse.ArgumentParser(description="scopething")
parser.add_argument('device', nargs='?', default=None, type=str, help="Device to connect to")
parser.add_argument('--debug', action='store_true', default=False, help="Debug logging")
args = parser.parse_args()
logging.basicConfig(level=logging.DEBUG if args.debug else logging.INFO, stream=sys.stdout)
s = await Scope.connect(args.device)
#await s.start_generator(2000, 'triangle')
#import numpy as np
#x = np.linspace(0, 2*np.pi, s.awg_wavetable_size, endpoint=False)
#y = (np.sin(x)**5 + 1) / 2
#await s.start_generator(1000, wavetable=y)
def await(g):
return asyncio.get_event_loop().run_until_complete(g)
def capture(*args, **kwargs):
return await(s.capture(*args, **kwargs))
def capturep(*args, **kwargs):
import pandas
return pandas.DataFrame(capture(*args, **kwargs))
def calibrate(*args, **kwargs):
return await(s.calibrate(*args, **kwargs))
def generate(*args, **kwargs):
return await(s.start_generator(*args, **kwargs))
if __name__ == '__main__':
asyncio.get_event_loop().run_until_complete(main())