1
0
mirror of https://github.com/jonathanhogg/scopething synced 2025-07-14 03:02:09 +01:00
Files
scopething/scope.py

326 lines
15 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import asyncio
import logging
import os
import struct
import streams
import vm
Log = logging.getLogger('scope')
class Scope(vm.VirtualMachine):
PARAMS_MAGIC = 0xb0b2
@classmethod
async def connect(cls, device=None):
if device is None:
scope = cls(streams.SerialStream())
elif os.path.exists(device):
scope = cls(streams.SerialStream(device=device))
elif ':' in device:
host, port = device.split(':', 1)
Log.info("Connecting to remote scope at {}:{}".format(host, port))
reader, writer = await asyncio.open_connection(host, int(port))
scope = cls(reader, writer)
else:
raise ValueError("Don't know what to do with '{}'".format(device))
await scope.setup()
return scope
@staticmethod
def _analog_map_func(ks, low, high):
return ks[0] + ks[1]*low + ks[2]*high
async def setup(self):
Log.info("Resetting scope")
await self.reset()
await self.issue_get_revision()
revision = ((await self.read_replies(2))[1]).decode('ascii')
if revision == 'BS000501':
self.awg_clock_period = 25e-9
self.awg_wavetable_size = 1024
self.awg_sample_buffer_size = 1024
self.awg_minimum_clock = 33
self.awg_maximum_voltage = 3.3
self.analog_params = (18.584, -3.5073, 298.11, 18.253, 0.40815)
self.analog_offsets = {'A': -0.011785, 'B': 0.011785}
self.analog_min = -5.7
self.analog_max = 8
self.capture_clock_period = 25e-9
self.capture_buffer_size = 12*1024
self.trigger_timeout_tick = 6.4e-6
self.trigger_low = -7.517
self.trigger_high = 10.816
# await self.load_params() XXX switch this off until I understand EEPROM better
self._generator_running = False
Log.info("Initialised scope, revision: {}".format(revision))
def close(self):
if self._writer is not None:
self._writer.close()
self._writer = None
self._reader = None
__del__ = close
async def load_params(self):
params = []
for i in range(struct.calcsize('<H8fH')):
params.append(await self.read_eeprom(i+70))
params = struct.unpack('<H8fH', bytes(params))
if params[0] == self.PARAMS_MAGIC and params[-1] == self.PARAMS_MAGIC:
self.analog_params = tuple(params[1:7])
self.analog_offsets['A'] = params[8]
self.analog_offsets['B'] = params[9]
async def save_params(self):
params = struct.pack('<H8fH', self.PARAMS_MAGIC, *self.analog_params,
self.analog_offsets['A'], self.analog_offsets['B'], self.PARAMS_MAGIC)
for i, byte in enumerate(params):
await self.write_eeprom(i+70, byte)
def calculate_lo_hi(self, low, high, params=None):
if params is None:
params = self.analog_params
d, f, b, scale, offset = params
l = low / scale + offset
h = high / scale + offset
al = d + f * (2*l - 1)**2
ah = d + f * (2*h - 1)**2
dl = (l*(2*al + b) - al*h) / b
dh = (h*(2*ah + b) - ah*(l + 1)) / b
return dl, dh
async def capture(self, channels=['A'], trigger_channel=None, trigger_level=0, trigger_type='rising', hair_trigger=False,
period=1e-3, nsamples=1000, timeout=None, low=None, high=None, raw=False):
if 'A' in channels and 'B' in channels:
nsamples_multiplier = 2
dual = True
else:
nsamples_multiplier = 1
dual = False
ticks = int(period / nsamples / nsamples_multiplier / self.capture_clock_period)
for clock_mode in vm.ClockModes:
if clock_mode.dual == dual and ticks in range(clock_mode.clock_low, clock_mode.clock_high + 1):
break
else:
raise RuntimeError("Unsupported clock period: {}".format(ticks))
if clock_mode.clock_max is not None and ticks > clock_mode.clock_max:
ticks = clock_mode.clock_max
nsamples = int(round(period / ticks / nsamples_multiplier / self.capture_clock_period))
total_samples = nsamples * nsamples_multiplier
buffer_width = self.capture_buffer_size // clock_mode.sample_width
assert total_samples <= buffer_width
if raw:
lo, hi = low, high
else:
if low is None:
low = self.analog_min
if high is None:
high = self.analog_max
lo, hi = self.calculate_lo_hi(low, high)
if trigger_channel is None:
trigger_channel = channels[0]
else:
assert trigger_channel in channels
spock_option = vm.SpockOption.TriggerTypeHardwareComparator
if trigger_channel == 'A':
kitchen_sink_a = vm.KitchenSinkA.ChannelAComparatorEnable
spock_option |= vm.SpockOption.TriggerSourceA
elif trigger_channel == 'B':
kitchen_sink_a = vm.KitchenSinkA.ChannelBComparatorEnable
spock_option |= vm.SpockOption.TriggerSourceB
kitchen_sink_b = vm.KitchenSinkB.AnalogFilterEnable
if self._generator_running:
kitchen_sink_b |= vm.KitchenSinkB.WaveformGeneratorEnable
if trigger_type.lower() in {'falling', 'below'}:
spock_option |= vm.SpockOption.TriggerInvert
trigger_intro = 0 if trigger_type.lower() in {'above', 'below'} else (1 if hair_trigger else 4)
if not raw:
trigger_level = (trigger_level - self.trigger_low) / (self.trigger_high - self.trigger_low)
analog_enable = 0
if 'A' in channels:
analog_enable |= 1
if 'B' in channels:
analog_enable |= 2
async with self.transaction():
await self.set_registers(TraceMode=clock_mode.TraceMode, BufferMode=clock_mode.BufferMode,
SampleAddress=0, ClockTicks=ticks, ClockScale=1,
TraceIntro=total_samples//2, TraceOutro=total_samples//2, TraceDelay=0,
Timeout=int(round((period*5 if timeout is None else timeout) / self.trigger_timeout_tick)),
TriggerMask=0x7f, TriggerLogic=0x80, TriggerLevel=trigger_level, SpockOption=spock_option,
TriggerIntro=trigger_intro, TriggerOutro=2 if hair_trigger else 4, Prelude=0,
ConverterLo=lo, ConverterHi=hi,
KitchenSinkA=kitchen_sink_a, KitchenSinkB=kitchen_sink_b, AnalogEnable=analog_enable)
await self.issue_program_spock_registers()
await self.issue_configure_device_hardware()
await self.issue_triggered_trace()
while True:
code, timestamp = (int(x, 16) for x in await self.read_replies(2))
if code != 2:
break
address = int((await self.read_replies(1))[0], 16) // nsamples_multiplier
traces = {}
for dump_channel, channel in enumerate(sorted(channels)):
async with self.transaction():
await self.set_registers(SampleAddress=(address - nsamples) * nsamples_multiplier % buffer_width,
DumpMode=clock_mode.DumpMode, DumpChan=dump_channel,
DumpCount=nsamples, DumpRepeat=1, DumpSend=1, DumpSkip=0)
await self.issue_program_spock_registers()
await self.issue_analog_dump_binary()
data = await self._reader.readexactly(nsamples * clock_mode.sample_width)
if clock_mode.sample_width == 2:
if raw:
trace = [(value / 65536 + 0.5) for value in struct.unpack('>{}h'.format(nsamples), data)]
else:
trace = [(value / 65536 + 0.5) * (high - low) + low + self.analog_offsets[channel]
for value in struct.unpack('>{}h'.format(nsamples), data)]
else:
if raw:
trace = [value / 256 for value in data]
else:
trace = [value / 256 * (high - low) + low + self.analog_offsets[channel] for value in data]
traces[channel] = trace
return traces
async def start_generator(self, frequency, waveform='sine', wavetable=None, ratio=0.5, vpp=None, offset=0,
min_samples=50, max_error=1e-4):
if vpp is None:
vpp = self.awg_maximum_voltage
possible_params = []
max_clock = int(round(1 / frequency / min_samples / self.awg_clock_period, 0))
for clock in range(self.awg_minimum_clock, max_clock+1):
width = 1 / frequency / (clock * self.awg_clock_period)
if width <= self.awg_sample_buffer_size:
nwaves = int(self.awg_sample_buffer_size / width)
size = int(round(nwaves * width))
width = size / nwaves
actualf = 1 / (width * clock * self.awg_clock_period)
error = abs(frequency - actualf) / frequency
if error < max_error:
possible_params.append(((error == 0, width), (size, nwaves, clock, actualf)))
if not possible_params:
raise ValueError("No solution to required frequency/min_samples/max_error")
size, nwaves, clock, actualf = sorted(possible_params)[-1][1]
async with self.transaction():
if wavetable is None:
mode = {'sine': 0, 'triangle': 1, 'sawtooth': 1, 'exponential': 2, 'square': 3}[waveform.lower()]
await self.set_registers(Cmd=0, Mode=mode, Ratio=ratio)
await self.issue_synthesize_wavetable()
else:
if len(wavetable) != self.awg_wavetable_size:
raise ValueError("Wavetable data must be {} samples".format(self.awg_wavetable_size))
await self.set_registers(Cmd=0, Mode=1, Address=0, Size=1)
await self.wavetable_write_bytes(wavetable)
await self.set_registers(Cmd=0, Mode=0, Level=vpp/self.awg_maximum_voltage,
Offset=2*offset/self.awg_maximum_voltage,
Ratio=nwaves * self.awg_wavetable_size / size,
Index=0, Address=0, Size=size)
await self.issue_translate_wavetable()
await self.set_registers(Cmd=2, Mode=0, Clock=clock, Modulo=size,
Mark=10, Space=1, Rest=0x7f00, Option=0x8004)
await self.issue_control_waveform_generator()
await self.set_registers(KitchenSinkB=vm.KitchenSinkB.WaveformGeneratorEnable)
await self.issue_configure_device_hardware()
await self.issue('.')
self._generator_running = True
return actualf
async def stop_generator(self):
async with self.transaction():
await self.set_registers(Cmd=1, Mode=0)
await self.issue_control_waveform_generator()
await self.set_registers(KitchenSinkB=0)
await self.issue_configure_device_hardware()
self._generator_running = False
async def read_wavetable(self):
with self.transaction():
self.set_registers(Address=0, Size=self.awg_wavetable_size)
self.issue_wavetable_read()
return list(self.read_exactly(self.awg_wavetable_size))
async def read_eeprom(self, address):
async with self.transaction():
await self.set_registers(EepromAddress=address)
await self.issue_read_eeprom()
return int((await self.read_replies(2))[1], 16)
async def write_eeprom(self, address, byte):
async with self.transaction():
await self.set_registers(EepromAddress=address, EepromData=byte)
await self.issue_write_eeprom()
if int((await self.read_replies(2))[1], 16) != byte:
raise RuntimeError("Error writing EEPROM byte")
async def calibrate(self, n=33):
import numpy as np
from scipy.optimize import leastsq, least_squares
items = []
await self.start_generator(1000, waveform='square')
for low in np.linspace(0.063, 0.4, n):
for high in np.linspace(0.877, 0.6, n):
data = await self.capture(channels='AB', period=2e-3, trigger_level=0.5, nsamples=1000, low=low, high=high, raw=True)
A = np.array(data['A'])
A.sort()
B = np.array(data['B'])
B.sort()
Azero, A3v3 = A[10:490].mean(), A[510:990].mean()
Bzero, B3v3 = B[10:490].mean(), B[510:990].mean()
zero = (Azero + Bzero) / 2
analog_range = 3.3 / ((A3v3 + B3v3)/2 - zero)
analog_low = -zero * analog_range
analog_high = analog_low + analog_range
offset = (Azero - Bzero) / 2 * analog_range
items.append((analog_low, analog_high, low, high, offset))
await self.stop_generator()
items = np.array(items)
def f(params, analog_low, analog_high, low, high):
lo, hi = self.calculate_lo_hi(analog_low, analog_high, params)
return np.sqrt((low - lo) ** 2 + (high - hi) ** 2)
result = least_squares(f, self.analog_params, args=items.T[:4], bounds=([0, -np.inf, 250, 0, 0], [np.inf, np.inf, 350, np.inf, np.inf]))
if result.success in range(1, 5):
self.analog_params = tuple(result.x)
offset = items[:, 4].mean()
self.analog_offsets = {'A': -offset, 'B': +offset}
else:
Log.warning("Calibration failed: {}".format(result.message))
print(result.message)
return result.success
import numpy as np
async def main():
global s, x, y, data
parser = argparse.ArgumentParser(description="scopething")
parser.add_argument('device', type=str, help="Device to connect to")
args = parser.parse_args()
s = await Scope.connect(args.device)
x = np.linspace(0, 2*np.pi, s.awg_wavetable_size, endpoint=False)
y = np.round((np.sin(x)**5)*127 + 128, 0).astype('uint8')
await s.start_generator(1000, wavetable=y)
#if await s.calibrate():
# await s.save_params()
def capture(*args, **kwargs):
return asyncio.get_event_loop().run_until_complete(s.capture(*args, **kwargs))
def calibrate(*args, **kwargs):
return asyncio.get_event_loop().run_until_complete(s.calibrate(*args, **kwargs))
if __name__ == '__main__':
import sys
logging.basicConfig(level=logging.DEBUG, stream=sys.stderr)
asyncio.get_event_loop().run_until_complete(main())