1
0
mirror of https://github.com/jonathanhogg/scopething synced 2025-07-13 18:52:10 +01:00
Files
scopething/scope.py
2016-10-19 17:33:11 +01:00

306 lines
14 KiB
Python

import asyncio
import struct
import streams
import vm
class Scope(vm.VirtualMachine):
PARAMS_MAGIC = 0xb0b2
@classmethod
async def connect(cls, stream=None):
scope = cls(stream if stream is not None else streams.SerialStream())
await scope.setup()
return scope
def __init__(self, stream):
super(Scope, self).__init__(stream)
@staticmethod
def _analog_map_func(ks, low, high):
return ks[0] + ks[1]*low + ks[2]*high
async def setup(self):
await self.reset()
await self.issue_get_revision()
revision = ((await self.read_replies(2))[1]).decode('ascii')
if revision.startswith('BS0005'):
self.awg_clock_period = 25e-9
self.awg_wavetable_size = 1024
self.awg_sample_buffer_size = 1024
self.awg_minimum_clock = 33
self.awg_maximum_voltage = 3.3
self.analog_low_ks = (0.43307040504672523, 0.060970272170312846, -0.0037186072558476487)
self.analog_high_ks = (0.37575241029061407, -0.0039308497942329686, 0.060955881466731247)
self.analog_min = -5.7
self.analog_max = 8
self.capture_clock_period = 25e-9
self.capture_buffer_size = 12*1024
self.trigger_timeout_tick = 6.4e-6
self.trigger_low = -7.517
self.trigger_high = 10.816
await self.load_params()
async def load_params(self):
params = []
for i in range(struct.calcsize('<H3f3f')):
params.append(await self.read_eeprom(i+100))
params = struct.unpack('<H3f3f', bytes(params))
if params[0] == self.PARAMS_MAGIC:
print("Loading params", params[1:])
self.analog_low_ks = params[1:4]
self.analog_high_ks = params[4:7]
async def save_params(self):
params = struct.pack('<H3f3f', self.PARAMS_MAGIC, *(self.analog_low_ks + self.analog_high_ks))
for i, byte in enumerate(params):
await self.write_eeprom(i+100, byte)
async def capture(self, channels=['A'], trigger_channel=None, trigger_level=0, trigger_type='rising',
period=1e-3, nsamples=1000, timeout=None, low=None, high=None, raw=False):
if 'A' in channels and 'B' in channels:
nsamples_multiplier = 2
else:
nsamples_multiplier = 1
ticks = int(period / nsamples / nsamples_multiplier / self.capture_clock_period)
if ticks >= 40 and ticks < 65536:
sample_width = 2
buffer_width = 6*1024
dump_mode = vm.DumpMode.Native
if 'A' in channels and 'B' in channels:
trace_mode = vm.TraceMode.MacroChop
buffer_mode = vm.BufferMode.MacroChop
else:
trace_mode = vm.TraceMode.Macro
buffer_mode = vm.BufferMode.Macro
elif ticks >= 15 and ticks < 40:
sample_width = 1
buffer_width = 12*1024
dump_mode = vm.DumpMode.Raw
if 'A' in channels and 'B' in channels:
trace_mode = vm.TraceMode.AnalogChop
buffer_mode = vm.BufferMode.Chop
else:
trace_mode = vm.TraceMode.Analog
buffer_mode = vm.BufferMode.Single
elif ticks >= 8 and ticks < 15:
sample_width = 1
buffer_width = 12*1024
dump_mode = vm.DumpMode.Raw
if 'A' in channels and 'B' in channels:
trace_mode = vm.TraceMode.AnalogFastChop
buffer_mode = vm.BufferMode.Chop
else:
trace_mode = vm.TraceMode.AnalogFast
buffer_mode = vm.BufferMode.Single
elif ticks >= 2 and ticks < 8:
if ticks > 5:
ticks = 5
sample_width = 1
buffer_width = 12*1024
dump_mode = vm.DumpMode.Raw
if 'A' in channels and 'B' in channels:
trace_mode = vm.TraceMode.AnalogShotChop
buffer_mode = vm.BufferMode.Chop
else:
trace_mode = vm.TraceMode.AnalogShot
buffer_mode = vm.BufferMode.Single
else:
raise RuntimeError("Unsupported clock period: {}".format(ticks))
nsamples = int(round(period / ticks / nsamples_multiplier / self.capture_clock_period))
total_samples = nsamples * nsamples_multiplier
assert total_samples <= buffer_width
if low is None:
low = 0 if raw else self.analog_min
if high is None:
high = 1 if raw else self.analog_max
if trigger_channel is None:
trigger_channel = channels[0]
else:
assert trigger_channel in channels
spock_option = vm.SpockOption.TriggerTypeHardwareComparator
if trigger_channel == 'A':
kitchen_sink_a = vm.KitchenSinkA.ChannelAComparatorEnable
spock_option |= vm.SpockOption.TriggerSourceA
elif trigger_channel == 'B':
kitchen_sink_a = vm.KitchenSinkA.ChannelBComparatorEnable
spock_option |= vm.SpockOption.TriggerSourceB
if trigger_type.lower() in {'falling', 'below'}:
spock_option |= vm.SpockOption.TriggerInvert
trigger_intro = 0 if trigger_type.lower() in {'above', 'below'} else 4
if not raw:
trigger_level = (trigger_level - self.trigger_low) / (self.trigger_high - self.trigger_low)
analog_enable = 0
if 'A' in channels:
analog_enable |= 1
if 'B' in channels:
analog_enable |= 2
async with self.transaction():
await self.set_registers(TraceMode=trace_mode, ClockTicks=ticks, ClockScale=1,
TraceIntro=total_samples//2, TraceOutro=total_samples//2, TraceDelay=0,
Timeout=int(round((period*5 if timeout is None else timeout) / self.trigger_timeout_tick)),
TriggerMask=0x7f, TriggerLogic=0x80, TriggerLevel=trigger_level,
TriggerIntro=trigger_intro, TriggerOutro=4, SpockOption=spock_option, Prelude=0,
ConverterLo=low if raw else self._analog_map_func(self.analog_low_ks, low, high),
ConverterHi=high if raw else self._analog_map_func(self.analog_high_ks, low, high),
KitchenSinkA=kitchen_sink_a,
KitchenSinkB=vm.KitchenSinkB.AnalogFilterEnable | vm.KitchenSinkB.WaveformGeneratorEnable,
AnalogEnable=analog_enable, BufferMode=buffer_mode, SampleAddress=0)
await self.issue_program_spock_registers()
await self.issue_configure_device_hardware()
await self.issue_triggered_trace()
while True:
code, timestamp = await self.read_replies(2)
code = int(code.decode('ascii'), 16)
timestamp = int(timestamp.decode('ascii'), 16)
if code == 2:
start_timestamp = timestamp
else:
end_timestamp = timestamp
break
address = int((await self.read_replies(1))[0].decode('ascii'), 16) // nsamples_multiplier
traces = {}
for dump_channel, channel in enumerate(sorted(channels)):
async with self.transaction():
await self.set_registers(SampleAddress=(address - nsamples) * nsamples_multiplier % buffer_width,
DumpMode=dump_mode, DumpChan=dump_channel,
DumpCount=nsamples, DumpRepeat=1, DumpSend=1, DumpSkip=0)
await self.issue_program_spock_registers()
await self.issue_analog_dump_binary()
data = await self._stream.readexactly(nsamples * sample_width)
if sample_width == 2:
if raw:
trace = [(value / 65536 + 0.5) for value in struct.unpack('>{}h'.format(nsamples), data)]
else:
trace = [(value / 65536 + 0.5) * (high - low) + low for value in struct.unpack('>{}h'.format(nsamples), data)]
else:
if raw:
trace = [value / 256 for value in data]
else:
trace = [value / 256 * (high - low) + low for value in data]
traces[channel] = trace
return traces
async def start_generator(self, frequency, waveform='sine', wavetable=None, ratio=0.5, vpp=None, offset=0,
min_samples=50, max_error=1e-4):
if vpp is None:
vpp = self.awg_maximum_voltage
possible_params = []
max_clock = int(round(1 / frequency / min_samples / self.awg_clock_period, 0))
for clock in range(self.awg_minimum_clock, max_clock+1):
width = 1 / frequency / (clock * self.awg_clock_period)
if width <= self.awg_sample_buffer_size:
nwaves = int(self.awg_sample_buffer_size / width)
size = int(round(nwaves * width))
width = size / nwaves
actualf = 1 / (width * clock * self.awg_clock_period)
error = abs(frequency - actualf) / frequency
if error < max_error:
possible_params.append(((error == 0, width), (size, nwaves, clock, actualf)))
clock += 1
if not possible_params:
raise ValueError("No solution to required frequency/min_samples/max_error")
size, nwaves, clock, actualf = sorted(possible_params)[-1][1]
async with self.transaction():
if wavetable is None:
mode = {'sine': 0, 'triangle': 1, 'sawtooth': 1, 'exponential': 2, 'square': 3}[waveform.lower()]
await self.set_registers(Cmd=0, Mode=mode, Ratio=ratio)
await self.issue_synthesize_wavetable()
else:
if len(wavetable) != self.awg_wavetable_size:
raise ValueError("Wavetable data must be {} samples".format(self.awg_wavetable_size))
await self.set_registers(Cmd=0, Mode=1, Address=0, Size=1)
await self.wavetable_write_bytes(wavetable)
await self.set_registers(Cmd=0, Mode=0, Level=vpp/self.awg_maximum_voltage,
Offset=2*offset/self.awg_maximum_voltage,
Ratio=nwaves * self.awg_wavetable_size / size,
Index=0, Address=0, Size=size)
await self.issue_translate_wavetable()
await self.set_registers(Cmd=2, Mode=0, Clock=clock, Modulo=size,
Mark=10, Space=1, Rest=0x7f00, Option=0x8004)
await self.issue_control_waveform_generator()
await self.set_registers(KitchenSinkB=vm.KitchenSinkB.WaveformGeneratorEnable)
await self.issue_configure_device_hardware()
await self.issue('.')
return actualf
async def stop_generator(self):
async with self.transaction():
await self.set_registers(Cmd=1, Mode=0)
await self.issue_control_waveform_generator()
await self.set_registers(KitchenSinkB=0)
await self.issue_configure_device_hardware()
async def read_wavetable(self):
with self.transaction():
self.set_registers(Address=0, Size=self.awg_wavetable_size)
self.issue_wavetable_read()
return list(self.read_exactly(self.awg_wavetable_size))
async def read_eeprom(self, address):
async with self.transaction():
await self.set_registers(EepromAddress=address)
await self.issue_read_eeprom()
return int((await self.read_replies(2))[1], 16)
async def write_eeprom(self, address, byte):
async with self.transaction():
await self.set_registers(EepromAddress=address, EepromData=byte)
await self.issue_write_eeprom()
return int((await self.read_replies(2))[1], 16)
async def calibrate(self, channels='AB', n=40):
import numpy as np
import pandas as pd
from scipy.optimize import leastsq
await self.start_generator(1000, waveform='square')
items = []
for low in np.linspace(0.063, 0.4, n):
for high in np.linspace(0.877, 0.6, n):
data = await self.capture(channels=channels, period=1e-3, trigger_level=0.5, nsamples=1000, low=low, high=high, raw=True)
values = np.hstack(list(data.values()))
values.sort()
zero = values[10:len(values)//2-10].mean()
v33 = values[-len(values)//2+10:-10].mean()
analog_range = 3.3 / (v33 - zero)
analog_low = -zero * analog_range
analog_high = analog_low + analog_range
items.append({'low': low, 'high': high, 'analog_low': analog_low, 'analog_high': analog_high})
data = pd.DataFrame(items)
analog_low_ks, success1 = leastsq(lambda ks, low, high, y: y - self._analog_map_func(ks, low, high), self.analog_low_ks,
args=(data.analog_low, data.analog_high, data.low))
if success1:
self.analog_low_ks = tuple(analog_low_ks)
analog_high_ks, success2 = leastsq(lambda ks, low, high, y: y - self._analog_map_func(ks, low, high), self.analog_high_ks,
args=(data.analog_low, data.analog_high, data.high))
if success2:
self.analog_high_ks = tuple(analog_high_ks)
await self.stop_generator()
return success1 and success2
import numpy as np
import pandas as pd
async def main():
global s, x, y, data
s = await Scope.connect()
x = np.linspace(0, 2*np.pi, s.awg_wavetable_size, endpoint=False)
y = np.round((np.sin(x)**5)*127 + 128, 0).astype('uint8')
await s.start_generator(1000, wavetable=y)
#if await s.calibrate():
# await s.save_params()
def capture(*args, **kwargs):
return pd.DataFrame(asyncio.get_event_loop().run_until_complete(s.capture(*args, **kwargs)))
if __name__ == '__main__':
asyncio.get_event_loop().run_until_complete(main())