1
0
mirror of https://github.com/jonathanhogg/scopething synced 2025-07-14 03:02:09 +01:00
Files
scopething/scope.py

523 lines
26 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import array
import asyncio
from collections import namedtuple
import logging
import math
import os
import sys
import streams
import vm
LOG = logging.getLogger('scope')
class UsageError(Exception):
pass
class ConfigurationError(Exception):
pass
class Scope(vm.VirtualMachine):
AnalogParams = namedtuple('AnalogParams', ['la', 'lb', 'lc', 'ha', 'hb', 'hc', 'scale', 'offset', 'safe_low', 'safe_high', 'ab_offset'])
@classmethod
async def connect(cls, device=None):
if device is None:
reader = writer = streams.SerialStream.stream_matching(0x0403, 0x6001)
elif os.path.exists(device):
reader = writer = streams.SerialStream(device=device)
elif ':' in device:
host, port = device.split(':', 1)
LOG.info(f"Connecting to remote scope at {host}:{port}")
reader, writer = await asyncio.open_connection(host, int(port))
else:
raise ValueError(f"Don't know what to do with {device!r}")
scope = cls(reader, writer)
await scope.setup()
return scope
async def setup(self):
LOG.info("Resetting scope")
await self.reset()
await self.issue_get_revision()
revision = ((await self.read_replies(2))[1]).decode('ascii')
if revision == 'BS000501':
self.master_clock_period = 25e-9
self.capture_buffer_size = 12<<10
self.awg_wavetable_size = 1024
self.awg_sample_buffer_size = 1024
self.awg_minimum_clock = 33
self.logic_low = 0
self.awg_maximum_voltage = self.clock_voltage = self.logic_high = 3.3
self.analog_params = {'x1': self.AnalogParams(1.11, -6.57e-2, 8.46e-3, 1.11, -7.32e-2, -5.19e-2, 18.28, -7.45, -5.5, 8, 5.3e-3),
'x10': self.AnalogParams(1.10, -6.11e-2, 8.61e-3, 1.10, -6.68e-2, -4.32e-2, 184.3, -90.4, -71.3, 65.7, 175e-3)}
self.analog_lo_min = 0.07
self.analog_hi_max = 0.88
self.timeout_clock_period = (1<<8) * self.master_clock_period
self.timestamp_rollover = (1<<32) * self.master_clock_period
else:
raise RuntimeError(f"Unsupported scope, revision: {revision}")
self._awg_running = False
self._clock_running = False
LOG.info(f"Initialised scope, revision: {revision}")
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
def close(self):
super().close()
LOG.info("Closed scope")
def calculate_lo_hi(self, low, high, params):
if not isinstance(params, self.AnalogParams):
params = self.AnalogParams(*(list(params) + [None]*(11-len(params))))
l = (low - params.offset) / params.scale
h = (high - params.offset) / params.scale
dl = params.la*l + params.lb*h + params.lc
dh = params.ha*h + params.hb*l + params.hc
return dl, dh
async def capture(self, channels=['A'], trigger=None, trigger_level=None, trigger_type='rising', hair_trigger=False,
period=1e-3, nsamples=1000, timeout=None, low=None, high=None, raw=False, trigger_position=0.25, probes='x1'):
analog_channels = set()
logic_channels = set()
for channel in channels:
channel = channel.upper()
if channel in {'A', 'B'}:
analog_channels.add(channel)
if trigger is None:
trigger = channel
elif channel == 'L':
logic_channels.update(range(8))
if trigger is None:
trigger = {0: 1}
elif channel in {'L0', 'L1', 'L2', 'L3', 'L4', 'L5', 'L6', 'L7'}:
i = int(channel[1:])
logic_channels.add(i)
if trigger is None:
trigger = {i: 1}
else:
raise ValueError(f"Unrecognised channel: {channel}")
if self._awg_running and 4 in logic_channels:
logic_channels.remove(4)
if self._clock_running and 5 in logic_channels:
logic_channels.remove(5)
if 'A' in analog_channels and 7 in logic_channels:
logic_channels.remove(7)
if 'B' in analog_channels and 6 in logic_channels:
logic_channels.remove(6)
analog_enable = sum(1<<(ord(channel)-ord('A')) for channel in analog_channels)
logic_enable = sum(1<<channel for channel in logic_channels)
ticks = int(round(period / nsamples / self.master_clock_period))
for capture_mode in vm.CaptureModes:
if capture_mode.analog_channels == len(analog_channels) and capture_mode.logic_channels == bool(logic_channels):
if ticks > capture_mode.clock_high and capture_mode.clock_divide:
for clock_scale in range(2, vm.Registers.ClockScale.maximum_value+1):
test_ticks = int(round(period / nsamples / self.master_clock_period / clock_scale))
if test_ticks in range(capture_mode.clock_low, capture_mode.clock_high + 1):
ticks = test_ticks
break
else:
continue
break
elif ticks >= capture_mode.clock_low:
clock_scale = 1
if ticks > capture_mode.clock_high:
ticks = capture_mode.clock_high
else:
continue
n = int(round(period / ticks / self.master_clock_period / clock_scale))
if len(analog_channels) == 2:
n -= n % 2
buffer_width = self.capture_buffer_size // capture_mode.sample_width
if logic_channels and analog_channels:
buffer_width //= 2
if n <= buffer_width:
nsamples = n
break
else:
raise ConfigurationError("Unable to find appropriate capture mode")
analog_params = self.analog_params[probes]
if raw:
lo, hi = low, high
else:
if low is None:
low = analog_params.safe_low if analog_channels else self.logic_low
elif low < analog_params.safe_low:
LOG.warning(f"Voltage range is below safe minimum: {low} < {analog_params.safe_low}")
if high is None:
high = analog_params.safe_high if analog_channels else self.logic_high
elif high > analog_params.safe_high:
LOG.warning(f"Voltage range is above safe maximum: {high} > {analog_params.safe_high}")
lo, hi = self.calculate_lo_hi(low, high, analog_params)
spock_option = vm.SpockOption.TriggerTypeHardwareComparator
kitchen_sink_a = kitchen_sink_b = 0
if self._awg_running:
kitchen_sink_b |= vm.KitchenSinkB.WaveformGeneratorEnable
if trigger == 'A' or 7 in logic_channels:
kitchen_sink_a |= vm.KitchenSinkA.ChannelAComparatorEnable
if trigger == 'B' or 6 in logic_channels:
kitchen_sink_a |= vm.KitchenSinkA.ChannelBComparatorEnable
if analog_channels:
kitchen_sink_b |= vm.KitchenSinkB.AnalogFilterEnable
if trigger_level is None:
trigger_level = (high + low) / 2
trigger_level = (trigger_level - analog_params.offset) / analog_params.scale
if trigger == 'A' or trigger == 'B':
if trigger == 'A':
spock_option |= vm.SpockOption.TriggerSourceA
trigger_logic = 0x80
elif trigger == 'B':
spock_option |= vm.SpockOption.TriggerSourceB
trigger_logic = 0x40
trigger_mask = 0xff ^ trigger_logic
elif isinstance(trigger, dict):
trigger_logic = 0
trigger_mask = 0xff
for channel, value in trigger.items():
if isinstance(channel, str):
if channel.startswith('L'):
channel = int(channel[1:])
else:
raise TypeError("Unrecognised trigger value")
if channel < 0 or channel > 7:
raise TypeError("Unrecognised trigger value")
mask = 1<<channel
trigger_mask &= ~mask
if value:
trigger_logic |= mask
else:
raise TypeError("Unrecognised trigger value")
if trigger_type.lower() in {'falling', 'below'}:
spock_option |= vm.SpockOption.TriggerInvert
trigger_outro = 4 if hair_trigger else 8
trigger_intro = 0 if trigger_type.lower() in {'above', 'below'} else trigger_outro
trigger_samples = min(max(0, int(nsamples*trigger_position)), nsamples)
trace_outro = max(0, nsamples-trigger_samples-trigger_outro)
trace_intro = max(0, trigger_samples-trigger_intro)
if timeout is None:
trigger_timeout = 0
else:
trigger_timeout = int(math.ceil(((trigger_intro+trigger_outro+trace_outro+2)*ticks*clock_scale*self.master_clock_period
+ timeout)/self.timeout_clock_period))
if trigger_timeout > vm.Registers.Timeout.maximum_value:
if timeout > 0:
raise ConfigurationError("Required trigger timeout too long")
else:
raise ConfigurationError("Required trigger timeout too long, use a later trigger position")
sample_period = ticks*clock_scale*self.master_clock_period
sample_rate = 1/sample_period
LOG.info(f"Begin {('mixed' if logic_channels else 'analogue') if analog_channels else 'logic'} signal capture "
f"at {sample_rate:,.0f} samples per second (trace mode {capture_mode.trace_mode.name})")
async with self.transaction():
await self.set_registers(TraceMode=capture_mode.trace_mode, BufferMode=capture_mode.buffer_mode,
SampleAddress=0, ClockTicks=ticks, ClockScale=clock_scale,
TriggerLevel=trigger_level, TriggerLogic=trigger_logic, TriggerMask=trigger_mask,
TraceIntro=trace_intro, TraceOutro=trace_outro, TraceDelay=0, Timeout=trigger_timeout,
TriggerIntro=trigger_intro//2, TriggerOutro=trigger_outro//2, Prelude=0,
SpockOption=spock_option, ConverterLo=lo, ConverterHi=hi,
KitchenSinkA=kitchen_sink_a, KitchenSinkB=kitchen_sink_b,
AnalogEnable=analog_enable, DigitalEnable=logic_enable)
await self.issue_program_spock_registers()
await self.issue_configure_device_hardware()
await self.issue_triggered_trace()
while True:
try:
code, timestamp = (int(x, 16) for x in await self.read_replies(2))
if code != vm.TraceStatus.Wait:
break
except asyncio.CancelledError:
await self.issue_cancel_trace()
cause = {vm.TraceStatus.Done: 'trigger', vm.TraceStatus.Auto: 'timeout', vm.TraceStatus.Stop: 'cancel'}[code]
start_timestamp = timestamp - nsamples*ticks*clock_scale
if start_timestamp < 0:
start_timestamp += 1<<32
timestamp += 1<<32
address = int((await self.read_replies(1))[0], 16)
if capture_mode.analog_channels == 2:
address -= address % 2
traces = vm.DotDict()
timestamps = array.array('d', (t*self.master_clock_period for t in range(start_timestamp, timestamp, ticks*clock_scale)))
start_time = start_timestamp*self.master_clock_period
for dump_channel, channel in enumerate(sorted(analog_channels)):
asamples = nsamples // len(analog_channels)
async with self.transaction():
await self.set_registers(SampleAddress=(address - nsamples) % buffer_width,
DumpMode=vm.DumpMode.Native if capture_mode.sample_width == 2 else vm.DumpMode.Raw,
DumpChan=dump_channel, DumpCount=asamples, DumpRepeat=1, DumpSend=1, DumpSkip=0)
await self.issue_program_spock_registers()
await self.issue_analog_dump_binary()
value_multiplier, value_offset = (1, 0) if raw else (high-low, low-analog_params.ab_offset/2*(1 if channel == 'A' else -1))
data = await self.read_analog_samples(asamples, capture_mode.sample_width)
traces[channel] = vm.DotDict({'timestamps': timestamps[dump_channel::len(analog_channels)] if len(analog_channels) > 1 else timestamps,
'samples': array.array('f', (value*value_multiplier+value_offset for value in data)),
'start_time': start_time+sample_period*dump_channel,
'sample_period': sample_period*len(analog_channels),
'sample_rate': sample_rate/len(analog_channels),
'cause': cause})
if logic_channels:
async with self.transaction():
await self.set_registers(SampleAddress=(address - nsamples) % buffer_width,
DumpMode=vm.DumpMode.Raw, DumpChan=128, DumpCount=nsamples, DumpRepeat=1, DumpSend=1, DumpSkip=0)
await self.issue_program_spock_registers()
await self.issue_analog_dump_binary()
data = await self.read_logic_samples(nsamples)
for i in logic_channels:
mask = 1<<i
traces[f'L{i}'] = vm.DotDict({'timestamps': timestamps,
'samples': array.array('B', (1 if value & mask else 0 for value in data)),
'start_time': start_time,
'sample_period': sample_period,
'sample_rate': sample_rate,
'cause': cause})
LOG.info(f"{nsamples} samples captured on {cause}, traces: {', '.join(traces)}")
return traces
async def start_waveform(self, frequency, waveform='sine', ratio=0.5, low=0, high=None, min_samples=50, max_error=1e-4):
if self._clock_running:
raise UsageError("Cannot start waveform generator while clock in use")
if high is None:
high = self.awg_maximum_voltage
elif high < 0 or high > self.awg_maximum_voltage:
raise ValueError(f"high out of range (0-{self.awg_maximum_voltage})")
if low < 0 or low > high:
raise ValueError("low out of range (0-high)")
possible_params = []
max_clock = int(math.floor(1 / frequency / min_samples / self.master_clock_period))
for clock in range(self.awg_minimum_clock, max_clock+1):
width = 1 / frequency / (clock * self.master_clock_period)
if width <= self.awg_sample_buffer_size:
nwaves = int(self.awg_sample_buffer_size / width)
size = int(round(nwaves * width))
width = size / nwaves
actualf = 1 / (width * clock * self.master_clock_period)
error = abs(frequency - actualf) / frequency
if error < max_error:
possible_params.append((width if error == 0 else -error, (size, nwaves, clock, actualf)))
if not possible_params:
raise ConfigurationError("No solution to required frequency/min_samples/max_error")
size, nwaves, clock, actualf = sorted(possible_params)[-1][1]
async with self.transaction():
if isinstance(waveform, str):
mode = {'sine': 0, 'triangle': 1, 'exponential': 2, 'square': 3}[waveform.lower()]
await self.set_registers(Cmd=0, Mode=mode, Ratio=ratio)
await self.issue_synthesize_wavetable()
elif len(wavetable) == self.awg_wavetable_size:
wavetable = bytes(min(max(0, int(round(y*255))),255) for y in wavetable)
await self.set_registers(Cmd=0, Mode=1, Address=0, Size=1)
await self.wavetable_write_bytes(wavetable)
else:
raise ValueError(f"waveform must be a valid name or {self.awg_wavetable_size} samples")
async with self.transaction():
offset = (high+low)/2 - self.awg_maximum_voltage/2
await self.set_registers(Cmd=0, Mode=0, Level=(high-low)/self.awg_maximum_voltage,
Offset=offset/self.awg_maximum_voltage,
Ratio=nwaves*self.awg_wavetable_size/size,
Index=0, Address=0, Size=size)
await self.issue_translate_wavetable()
async with self.transaction():
await self.set_registers(Cmd=2, Mode=0, Clock=clock, Modulo=size,
Mark=10, Space=1, Rest=0x7f00, Option=0x8004)
await self.issue_control_clock_generator()
async with self.transaction():
await self.set_registers(KitchenSinkB=vm.KitchenSinkB.WaveformGeneratorEnable)
await self.issue_configure_device_hardware()
self._awg_running = True
LOG.info(f"Signal generator running at {actualf:0.1f}Hz")
return actualf
async def stop_waveform(self):
if not self._awg_running:
raise UsageError("Waveform generator not in use")
async with self.transaction():
await self.set_registers(Cmd=1, Mode=0)
await self.issue_control_clock_generator()
await self.set_registers(KitchenSinkB=0)
await self.issue_configure_device_hardware()
LOG.info("Signal generator stopped")
self._awg_running = False
async def start_clock(self, frequency, ratio=0.5, max_error=1e-4):
if self._awg_running:
raise UsageError("Cannot start clock while waveform generator in use")
ticks = min(max(2, int(round(1 / frequency / self.master_clock_period))), vm.Registers.Clock.maximum_value)
fall = min(max(1, int(round(ticks * ratio))), ticks-1)
actualf, actualr = 1 / ticks / self.master_clock_period, fall / ticks
if abs(actualf - frequency) / frequency > max_error:
raise ConfigurationError("No solution to required frequency and max_error")
async with self.transaction():
await self.set_registers(Map5=0x12, Clock=ticks, Rise=0, Fall=fall, Control=0x80, Cmd=3, Mode=0)
await self.issue_control_clock_generator()
self._clock_running = True
LOG.info(f"Clock generator running at {actualf:0.1f}Hz, {actualr*100:.0f}% duty cycle")
return actualf, actualr
async def stop_clock(self):
if not self._clock_running:
raise UsageError("Clock not in use")
async with self.transaction():
await self.set_registers(Map5=0, Cmd=1, Mode=0)
await self.issue_control_clock_generator()
LOG.info("Clock generator stopped")
self._clock_running = False
async def read_wavetable(self):
with self.transaction():
self.set_registers(Address=0, Size=self.awg_wavetable_size)
self.issue_wavetable_read()
return list(self.wavetable_read_bytes(self.awg_wavetable_size))
async def read_eeprom(self, address):
async with self.transaction():
await self.set_registers(EepromAddress=address)
await self.issue_read_eeprom()
return int((await self.read_replies(2))[1], 16)
async def write_eeprom(self, address, byte):
async with self.transaction():
await self.set_registers(EepromAddress=address, EepromData=byte)
await self.issue_write_eeprom()
if int((await self.read_replies(2))[1], 16) != byte:
raise RuntimeError("Error writing EEPROM byte")
async def calibrate(self, probes='x1', n=32):
import numpy as np
from scipy.optimize import minimize
items = []
async def measure(lo, hi, period=2e-3, chop=True):
if chop:
traces = await self.capture(channels=['A','B'], period=period, nsamples=2000, timeout=0, low=lo, high=hi, raw=True)
A = np.array(traces.A.samples)
B = np.array(traces.B.samples)
else:
A = np.array((await self.capture(channels=['A'], period=period/2, nsamples=1000, timeout=0, low=lo, high=hi, raw=True)).A.samples)
B = np.array((await self.capture(channels=['B'], period=period/2, nsamples=1000, timeout=0, low=lo, high=hi, raw=True)).B.samples)
Amean = A.mean()
Azero, Afull = np.median(A[A<=Amean]), np.median(A[A>=Amean])
Bmean = B.mean()
Bzero, Bfull = np.median(B[B<=Bmean]), np.median(B[B>=Bmean])
return (Azero + Bzero) / 2, (Afull + Bfull) / 2, ((Afull - Bfull) + (Azero - Azero)) / 2
await self.start_clock(frequency=2000)
zero, full, offset = await measure(1/3, 2/3)
zero = (zero + 1) / 3
full = (full + 1) / 3
analog_scale = self.clock_voltage / (full - zero)
analog_offset = -zero * analog_scale
LOG.info(f"Analog full range = {analog_scale:.1f}V, zero offset = {analog_offset:.1f}V")
for lo in np.linspace(self.analog_lo_min, 0.5, n, endpoint=False):
for hi in np.linspace(self.analog_hi_max, 0.5, n):
period = 2e-3 if len(items) % 4 < 2 else 1e-3
zero, full, offset = await measure(lo, hi, 2e-3 if len(items) % 4 < 2 else 1e-3, len(items) % 2 == 0)
if zero > 0.01 and full < 0.99 and full > zero:
analog_range = self.clock_voltage / (full - zero)
items.append((lo, hi, -zero*analog_range, (1-zero)*analog_range, offset*analog_range))
await self.stop_clock()
items = np.array(items).T
lo, hi, low, high, offset = items
def f(params):
dl, dh = self.calculate_lo_hi(low, high, self.AnalogParams(*params, analog_scale, analog_offset, None, None, None))
return np.sqrt((lo-dl)**2 + (hi-dh)**2).mean()
start_params = self.analog_params.get(probes, [1,0,0,1,0,0])[:6]
result = minimize(f, start_params, method='SLSQP',
bounds=[(1,np.inf), (-np.inf,0), (0,np.inf), (1,np.inf), (-np.inf,0), (-np.inf,0)],
constraints=[{'type': 'eq', 'fun': lambda x: x[0]*1/3 + x[1]*2/3 + x[2] - 1/3},
{'type': 'eq', 'fun': lambda x: x[3]*2/3 + x[4]*1/3 + x[5] - 2/3}])
if result.success:
LOG.info(f"Calibration succeeded: {result.message}")
params = self.AnalogParams(*result.x, analog_scale, analog_offset, None, None, None)
def f(x):
lo, hi = self.calculate_lo_hi(x[0], x[1], params)
return np.sqrt((self.analog_lo_min - lo)**2 + (self.analog_hi_max - hi)**2)
safe_low, safe_high = minimize(f, (low[0], high[0])).x
offset_mean = offset.mean()
params = self.analog_params[probes] = self.AnalogParams(*result.x, analog_scale, analog_offset, safe_low, safe_high, offset_mean)
LOG.info(f"Analog parameters: la={params.la:.3e} lb={params.lb:.3e} lc={params.lc:.3e} "
f"ha={params.ha:.3e} hb={params.hb:.3e} hc={params.hc:.3e} "
f"scale={params.scale:.3f}V offset={params.offset:.3f}V "
f"safe_low={params.safe_low:.1f}V safe_high={params.safe_high:.1f}V "
f"ab_offset={offset_mean*1000:.1f}mV (±{100*offset.std()/offset_mean:.1f}%)")
clo, chi = self.calculate_lo_hi(low, high, params)
lo_error = np.sqrt((((clo-lo)/(hi-lo))**2).mean())
hi_error = np.sqrt((((chi-hi)/(hi-lo))**2).mean())
LOG.info(f"Mean error: lo={lo_error*10000:.1f}bps hi={hi_error*10000:.1f}bps")
else:
LOG.warning(f"Calibration failed: {result.message}")
return result.success
"""
resistance$ ipython3 --pylab
Using matplotlib backend: MacOSX
In [1]: import pandas
In [2]: run scope
INFO:scope:Resetting scope
INFO:scope:Initialised scope, revision: BS000501
In [3]: generate(2000, 'triangle')
Out[3]: 2000.0
In [4]: capturep(['A', 'B'], low=0, high=3.3).interpolate().plot()
Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0x10db77d30>
In [5]: capturep(['L'], low=0, high=3.3)).plot()
Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x10d05d5f8>
In [6]:
"""
async def main():
global s
parser = argparse.ArgumentParser(description="scopething")
parser.add_argument('device', nargs='?', default=None, type=str, help="Device to connect to")
parser.add_argument('--debug', action='store_true', default=False, help="Debug logging")
parser.add_argument('--verbose', action='store_true', default=False, help="Verbose logging")
args = parser.parse_args()
logging.basicConfig(level=logging.DEBUG if args.debug else (logging.INFO if args.verbose else logging.WARNING), stream=sys.stdout)
s = await Scope.connect(args.device)
def await_(g):
task = asyncio.Task(g)
while True:
try:
return asyncio.get_event_loop().run_until_complete(task)
except KeyboardInterrupt:
task.cancel()
def capture(*args, **kwargs):
return await_(s.capture(*args, **kwargs))
def capturep(*args, **kwargs):
import pandas
traces = capture(*args, **kwargs)
return pandas.DataFrame({channel: pandas.Series(trace.samples, trace.timestamps) for (channel,trace) in traces.items()})
def calibrate(*args, **kwargs):
return await_(s.calibrate(*args, **kwargs))
def start_waveform(*args, **kwargs):
return await_(s.start_waveform(*args, **kwargs))
def start_clock(*args, **kwargs):
return await_(s.start_clock(*args, **kwargs))
if __name__ == '__main__':
asyncio.get_event_loop().run_until_complete(main())