1
0
mirror of https://github.com/jonathanhogg/scopething synced 2025-07-13 18:52:10 +01:00
Files
scopething/analysis.py
2020-06-29 19:28:53 +01:00

169 lines
5.4 KiB
Python

import numpy as np
def interpolate_min_x(f, x):
return 0.5 * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x
def rms(f):
return np.sqrt((f ** 2).mean())
def sine_wave(n):
return np.sin(np.linspace(0, 2*np.pi, n, endpoint=False))
def triangle_wave(n):
x = np.linspace(0, 4, n, endpoint=False)
x2 = x % 2
y = np.where(x2 < 1, x2, 2 - x2)
y = np.where(x // 2 < 1, y, -y)
return y
def square_wave(n, duty=0.5):
w = int(n * duty)
return np.hstack([np.ones(w), -np.ones(n - w)])
def sawtooth_wave(n):
return 2 * (np.linspace(0.5, 1.5, n, endpoint=False) % 1) - 1
def moving_average(samples, width, mode='wrap'):
hwidth = width // 2
samples = np.take(samples, np.arange(-hwidth, len(samples)+width-hwidth), mode=mode)
cumulative = samples.cumsum()
return (cumulative[width:] - cumulative[:-width]) / width
def calculate_periodicity(series, window=0.1):
samples = np.array(series.samples)
window = int(len(samples) * window)
errors = np.zeros(len(samples) - window)
for i in range(1, len(errors) + 1):
errors[i-1] = rms(samples[i:] - samples[:-i])
threshold = errors.max() / 2
minima = []
for i in range(window, len(errors) - window):
p = errors[i-window:i+window].argmin()
if p == window and errors[p + i - window] < threshold:
minima.append(interpolate_min_x(errors, i))
if len(minima) <= 1:
return None
ks = np.polyfit(np.arange(0, len(minima)), minima, 1)
return ks[0] / series.sample_rate
def extract_waveform(series, period):
p = int(round(series.sample_rate * period))
n = len(series.samples) // p
if n <= 2:
return None, None
samples = np.array(series.samples)[:p*n]
cumsum = samples.cumsum()
underlying = (cumsum[p:] - cumsum[:-p]) / p
n -= 1
samples = samples[p//2:p*n + p//2] - underlying
wave = np.zeros(p)
for i in range(n):
o = i * p
wave += samples[o:o+p]
wave /= n
return wave, p//2, n, underlying
def normalize_waveform(samples, smooth=7):
n = len(samples)
smoothed = moving_average(samples, smooth)
scale = (smoothed.max() - smoothed.min()) / 2
offset = (smoothed.max() + smoothed.min()) / 2
smoothed -= offset
last_rising = first_falling = None
crossings = []
for i in range(n):
if smoothed[i-1] < 0 and smoothed[i] > 0:
last_rising = i
elif smoothed[i-1] > 0 and smoothed[i] < 0:
if last_rising is None:
first_falling = i
else:
crossings.append((i - last_rising, last_rising))
if first_falling is not None:
crossings.append((n + first_falling - last_rising, last_rising))
width, first = min(crossings)
wave = np.hstack([smoothed[first:], smoothed[:first]]) / scale
return wave, offset, scale, first, sorted((i - first % n, w) for (w, i) in crossings)
def characterize_waveform(samples, crossings):
n = len(samples)
possibles = []
if len(crossings) == 1:
duty_cycle = crossings[0][1] / n
if duty_cycle > 0.45 and duty_cycle < 0.55:
possibles.append((rms(samples - sine_wave(n)), 'sine', None))
possibles.append((rms(samples - triangle_wave(n)), 'triangle', None))
possibles.append((rms(samples - sawtooth_wave(n)), 'sawtooth', None))
possibles.append((rms(samples - square_wave(n, duty_cycle)), 'square', duty_cycle))
possibles.sort()
return possibles
def analyze_series(series):
period = calculate_periodicity(series)
if period is not None:
waveform = DotDict(period=period, frequency=1 / period)
wave, start, count, underlying = extract_waveform(series, period)
wave, offset, scale, first, crossings = normalize_waveform(wave)
waveform.samples = wave
waveform.beginning = start + first
waveform.count = count
waveform.amplitude = scale
waveform.offset = underlying.mean() + offset
possibles = characterize_waveform(wave, crossings)
if possibles:
error, shape, duty_cycle = possibles[0]
waveform.error = error
waveform.shape = shape
if duty_cycle is not None:
waveform.duty_cycle = duty_cycle
else:
waveform.shape = 'unknown'
series.waveform = waveform
# %%
from pylab import figure, plot, show
from utils import DotDict
o = 400
m = 5
n = o * m
samples = square_wave(o)
samples = np.hstack([samples] * m) * 2
samples = np.hstack([samples[100:], samples[:100]])
samples += np.random.normal(size=n) * 0.1
samples += np.linspace(4.5, 5.5, n)
series = DotDict(samples=samples, sample_rate=1000000)
analyze_series(series)
if 'waveform' in series:
waveform = series.waveform
if 'duty_cycle' in waveform:
print(f"Found {waveform.frequency:.0f}Hz {waveform.shape} wave, "
f"with duty cycle {waveform.duty_cycle * 100:.0f}%, "
f"amplitude ±{waveform.amplitude:.1f}V and offset {waveform.offset:.1f}V")
else:
print(f"Found {waveform.frequency:.0f}Hz {waveform.shape} wave, "
f"with amplitude ±{waveform.amplitude:.1f}V and offset {waveform.offset:.1f}V")
figure(1)
plot(series.samples)
wave = np.hstack([waveform.samples[-waveform.beginning:]] + [waveform.samples] * waveform.count + [waveform.samples[:-waveform.beginning]])
plot(wave * waveform.amplitude + waveform.offset)
show()