mirror of
https://github.com/jonathanhogg/scopething
synced 2025-07-13 18:52:10 +01:00
Analysis tweaks; split out test code for the moment
This commit is contained in:
48
analysis.py
48
analysis.py
@ -1,6 +1,8 @@
|
||||
|
||||
import numpy as np
|
||||
|
||||
from utils import DotDict
|
||||
|
||||
|
||||
def interpolate_min_x(f, x):
|
||||
return 0.5 * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x
|
||||
@ -39,7 +41,7 @@ def moving_average(samples, width, mode='wrap'):
|
||||
|
||||
|
||||
def calculate_periodicity(series, window=0.1):
|
||||
samples = np.array(series.samples)
|
||||
samples = np.array(series.samples, dtype='double')
|
||||
window = int(len(samples) * window)
|
||||
errors = np.zeros(len(samples) - window)
|
||||
for i in range(1, len(errors) + 1):
|
||||
@ -93,7 +95,7 @@ def normalize_waveform(samples, smooth=7):
|
||||
if first_falling is not None:
|
||||
crossings.append((n + first_falling - last_rising, last_rising))
|
||||
width, first = min(crossings)
|
||||
wave = np.hstack([smoothed[first:], smoothed[:first]]) / scale
|
||||
wave = (np.hstack([samples[first:], samples[:first]]) - offset) / scale
|
||||
return wave, offset, scale, first, sorted((i - first % n, w) for (w, i) in crossings)
|
||||
|
||||
|
||||
@ -111,7 +113,7 @@ def characterize_waveform(samples, crossings):
|
||||
return possibles
|
||||
|
||||
|
||||
def analyze_series(series):
|
||||
def annotate_series(series):
|
||||
period = calculate_periodicity(series)
|
||||
if period is not None:
|
||||
waveform = DotDict(period=period, frequency=1 / period)
|
||||
@ -122,6 +124,10 @@ def analyze_series(series):
|
||||
waveform.count = count
|
||||
waveform.amplitude = scale
|
||||
waveform.offset = underlying.mean() + offset
|
||||
waveform.timestamps = np.arange(len(wave)) * series.sample_period
|
||||
waveform.sample_period = series.sample_period
|
||||
waveform.sample_rate = series.sample_rate
|
||||
waveform.capture_start = series.capture_start + waveform.beginning * series.sample_period
|
||||
possibles = characterize_waveform(wave, crossings)
|
||||
if possibles:
|
||||
error, shape, duty_cycle = possibles[0]
|
||||
@ -132,37 +138,5 @@ def analyze_series(series):
|
||||
else:
|
||||
waveform.shape = 'unknown'
|
||||
series.waveform = waveform
|
||||
|
||||
|
||||
# %%
|
||||
|
||||
from pylab import figure, plot, show
|
||||
from utils import DotDict
|
||||
|
||||
o = 400
|
||||
m = 5
|
||||
n = o * m
|
||||
samples = square_wave(o)
|
||||
samples = np.hstack([samples] * m) * 2
|
||||
samples = np.hstack([samples[100:], samples[:100]])
|
||||
samples += np.random.normal(size=n) * 0.1
|
||||
samples += np.linspace(4.5, 5.5, n)
|
||||
series = DotDict(samples=samples, sample_rate=1000000)
|
||||
|
||||
analyze_series(series)
|
||||
|
||||
if 'waveform' in series:
|
||||
waveform = series.waveform
|
||||
if 'duty_cycle' in waveform:
|
||||
print(f"Found {waveform.frequency:.0f}Hz {waveform.shape} wave, "
|
||||
f"with duty cycle {waveform.duty_cycle * 100:.0f}%, "
|
||||
f"amplitude ±{waveform.amplitude:.1f}V and offset {waveform.offset:.1f}V")
|
||||
else:
|
||||
print(f"Found {waveform.frequency:.0f}Hz {waveform.shape} wave, "
|
||||
f"with amplitude ±{waveform.amplitude:.1f}V and offset {waveform.offset:.1f}V")
|
||||
|
||||
figure(1)
|
||||
plot(series.samples)
|
||||
wave = np.hstack([waveform.samples[-waveform.beginning:]] + [waveform.samples] * waveform.count + [waveform.samples[:-waveform.beginning]])
|
||||
plot(wave * waveform.amplitude + waveform.offset)
|
||||
show()
|
||||
return True
|
||||
return False
|
||||
|
40
test.py
Normal file
40
test.py
Normal file
@ -0,0 +1,40 @@
|
||||
|
||||
import numpy as np
|
||||
from pylab import figure, plot, show
|
||||
|
||||
from analysis import annotate_series
|
||||
from scope import await_, capture, main
|
||||
from utils import DotDict
|
||||
|
||||
|
||||
await_(main())
|
||||
|
||||
# o = 400
|
||||
# m = 5
|
||||
# n = o * m
|
||||
# samples = square_wave(o)
|
||||
# samples = np.hstack([samples] * m) * 2
|
||||
# samples = np.hstack([samples[100:], samples[:100]])
|
||||
# samples += np.random.normal(size=n) * 0.1
|
||||
# samples += np.linspace(4.5, 5.5, n)
|
||||
# series = DotDict(samples=samples, sample_rate=1000000)
|
||||
|
||||
data = capture(['A'], period=20e-3, nsamples=2000)
|
||||
series = data.A
|
||||
|
||||
figure(1)
|
||||
plot(series.timestamps, series.samples)
|
||||
|
||||
if annotate_series(series):
|
||||
waveform = series.waveform
|
||||
if 'duty_cycle' in waveform:
|
||||
print(f"Found {waveform.frequency:.0f}Hz {waveform.shape} wave, "
|
||||
f"with duty cycle {waveform.duty_cycle * 100:.0f}%, "
|
||||
f"amplitude ±{waveform.amplitude:.1f}V and offset {waveform.offset:.1f}V")
|
||||
else:
|
||||
print(f"Found {waveform.frequency:.0f}Hz {waveform.shape} wave, "
|
||||
f"with amplitude ±{waveform.amplitude:.2f}V and offset {waveform.offset:.2f}V")
|
||||
|
||||
plot(waveform.timestamps + waveform.capture_start - series.capture_start, waveform.samples * waveform.amplitude + waveform.offset)
|
||||
|
||||
show()
|
Reference in New Issue
Block a user