1
0
mirror of https://github.com/jonathanhogg/scopething synced 2025-07-14 11:12:09 +01:00

Compare commits

..

3 Commits

4 changed files with 55 additions and 42 deletions

View File

@ -1,6 +1,8 @@
import numpy as np import numpy as np
from utils import DotDict
def interpolate_min_x(f, x): def interpolate_min_x(f, x):
return 0.5 * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x return 0.5 * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x
@ -39,7 +41,7 @@ def moving_average(samples, width, mode='wrap'):
def calculate_periodicity(series, window=0.1): def calculate_periodicity(series, window=0.1):
samples = np.array(series.samples) samples = np.array(series.samples, dtype='double')
window = int(len(samples) * window) window = int(len(samples) * window)
errors = np.zeros(len(samples) - window) errors = np.zeros(len(samples) - window)
for i in range(1, len(errors) + 1): for i in range(1, len(errors) + 1):
@ -93,7 +95,7 @@ def normalize_waveform(samples, smooth=7):
if first_falling is not None: if first_falling is not None:
crossings.append((n + first_falling - last_rising, last_rising)) crossings.append((n + first_falling - last_rising, last_rising))
width, first = min(crossings) width, first = min(crossings)
wave = np.hstack([smoothed[first:], smoothed[:first]]) / scale wave = (np.hstack([samples[first:], samples[:first]]) - offset) / scale
return wave, offset, scale, first, sorted((i - first % n, w) for (w, i) in crossings) return wave, offset, scale, first, sorted((i - first % n, w) for (w, i) in crossings)
@ -111,7 +113,7 @@ def characterize_waveform(samples, crossings):
return possibles return possibles
def analyze_series(series): def annotate_series(series):
period = calculate_periodicity(series) period = calculate_periodicity(series)
if period is not None: if period is not None:
waveform = DotDict(period=period, frequency=1 / period) waveform = DotDict(period=period, frequency=1 / period)
@ -122,6 +124,10 @@ def analyze_series(series):
waveform.count = count waveform.count = count
waveform.amplitude = scale waveform.amplitude = scale
waveform.offset = underlying.mean() + offset waveform.offset = underlying.mean() + offset
waveform.timestamps = np.arange(len(wave)) * series.sample_period
waveform.sample_period = series.sample_period
waveform.sample_rate = series.sample_rate
waveform.capture_start = series.capture_start + waveform.beginning * series.sample_period
possibles = characterize_waveform(wave, crossings) possibles = characterize_waveform(wave, crossings)
if possibles: if possibles:
error, shape, duty_cycle = possibles[0] error, shape, duty_cycle = possibles[0]
@ -132,37 +138,5 @@ def analyze_series(series):
else: else:
waveform.shape = 'unknown' waveform.shape = 'unknown'
series.waveform = waveform series.waveform = waveform
return True
return False
# %%
from pylab import figure, plot, show
from utils import DotDict
o = 400
m = 5
n = o * m
samples = square_wave(o)
samples = np.hstack([samples] * m) * 2
samples = np.hstack([samples[100:], samples[:100]])
samples += np.random.normal(size=n) * 0.1
samples += np.linspace(4.5, 5.5, n)
series = DotDict(samples=samples, sample_rate=1000000)
analyze_series(series)
if 'waveform' in series:
waveform = series.waveform
if 'duty_cycle' in waveform:
print(f"Found {waveform.frequency:.0f}Hz {waveform.shape} wave, "
f"with duty cycle {waveform.duty_cycle * 100:.0f}%, "
f"amplitude ±{waveform.amplitude:.1f}V and offset {waveform.offset:.1f}V")
else:
print(f"Found {waveform.frequency:.0f}Hz {waveform.shape} wave, "
f"with amplitude ±{waveform.amplitude:.1f}V and offset {waveform.offset:.1f}V")
figure(1)
plot(series.samples)
wave = np.hstack([waveform.samples[-waveform.beginning:]] + [waveform.samples] * waveform.count + [waveform.samples[:-waveform.beginning]])
plot(wave * waveform.amplitude + waveform.offset)
show()

View File

@ -302,7 +302,8 @@ class Scope(vm.VirtualMachine):
address -= address % 2 address -= address % 2
traces = DotDict() traces = DotDict()
timestamps = array.array('d', (t*self.master_clock_period for t in range(0, timestamp, ticks*clock_scale)))
timestamps = array.array('d', (i * sample_period for i in range(nsamples)))
for dump_channel, channel in enumerate(sorted(analog_channels)): for dump_channel, channel in enumerate(sorted(analog_channels)):
asamples = nsamples // len(analog_channels) asamples = nsamples // len(analog_channels)
async with self.transaction(): async with self.transaction():
@ -314,7 +315,7 @@ class Scope(vm.VirtualMachine):
value_multiplier, value_offset = (1, 0) if raw else (high-low, low-analog_params.ab_offset/2*(1 if channel == 'A' else -1)) value_multiplier, value_offset = (1, 0) if raw else (high-low, low-analog_params.ab_offset/2*(1 if channel == 'A' else -1))
data = await self.read_analog_samples(asamples, capture_mode.sample_width) data = await self.read_analog_samples(asamples, capture_mode.sample_width)
series = DotDict({'channel': channel, series = DotDict({'channel': channel,
'start_timestamp': start_timestamp, 'capture_start': start_timestamp * self.master_clock_period,
'timestamps': timestamps[dump_channel::len(analog_channels)] if len(analog_channels) > 1 else timestamps, 'timestamps': timestamps[dump_channel::len(analog_channels)] if len(analog_channels) > 1 else timestamps,
'samples': array.array('f', (value*value_multiplier+value_offset for value in data)), 'samples': array.array('f', (value*value_multiplier+value_offset for value in data)),
'sample_period': sample_period*len(analog_channels), 'sample_period': sample_period*len(analog_channels),
@ -336,7 +337,7 @@ class Scope(vm.VirtualMachine):
mask = 1 << i mask = 1 << i
channel = f'L{i}' channel = f'L{i}'
series = DotDict({'channel': channel, series = DotDict({'channel': channel,
'start_timestamp': start_timestamp, 'capture_start': start_timestamp * self.master_clock_period,
'timestamps': timestamps, 'timestamps': timestamps,
'samples': array.array('B', (1 if value & mask else 0 for value in data)), 'samples': array.array('B', (1 if value & mask else 0 for value in data)),
'sample_period': sample_period, 'sample_period': sample_period,

40
test.py Normal file
View File

@ -0,0 +1,40 @@
import numpy as np
from pylab import figure, plot, show
from analysis import annotate_series
from scope import await_, capture, main
from utils import DotDict
await_(main())
# o = 400
# m = 5
# n = o * m
# samples = square_wave(o)
# samples = np.hstack([samples] * m) * 2
# samples = np.hstack([samples[100:], samples[:100]])
# samples += np.random.normal(size=n) * 0.1
# samples += np.linspace(4.5, 5.5, n)
# series = DotDict(samples=samples, sample_rate=1000000)
data = capture(['A'], period=20e-3, nsamples=2000)
series = data.A
figure(1)
plot(series.timestamps, series.samples)
if annotate_series(series):
waveform = series.waveform
if 'duty_cycle' in waveform:
print(f"Found {waveform.frequency:.0f}Hz {waveform.shape} wave, "
f"with duty cycle {waveform.duty_cycle * 100:.0f}%, "
f"amplitude ±{waveform.amplitude:.1f}V and offset {waveform.offset:.1f}V")
else:
print(f"Found {waveform.frequency:.0f}Hz {waveform.shape} wave, "
f"with amplitude ±{waveform.amplitude:.2f}V and offset {waveform.offset:.2f}V")
plot(waveform.timestamps + waveform.capture_start - series.capture_start, waveform.samples * waveform.amplitude + waveform.offset)
show()

View File

@ -4,5 +4,3 @@ class DotDict(dict):
__getattr__ = dict.__getitem__ __getattr__ = dict.__getitem__
__setattr__ = dict.__setitem__ __setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__ __delattr__ = dict.__delitem__